K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

ai biết ko 1phần3+5phần8-7phần12

3 tháng 6 2015

Đặt A=\(\frac{4000}{1}+\frac{3999}{2}+\frac{3998}{3}+........+\frac{1}{4000}\)

A=\(1+\left(1+\frac{3999}{2}\right)+\left(1+\frac{3998}{3}\right)+........+\left(1+\frac{1}{4000}\right)\)

A=\(\frac{4001}{4001}+\frac{4001}{2}+\frac{4001}{3}+...........+\frac{4001}{4000}\)

A=\(4001.\left(\frac{1}{2}+\frac{1}{3}+........+\frac{1}{4000}+\frac{1}{4001}\right)\)

=>\(y=\frac{4001.\left(\frac{1}{2}+\frac{1}{3}+........+\frac{1}{4001}\right)}{\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{4001}}\)

=>\(y=4001\)

19 tháng 4 2019

A=[(3999/2+1)+(3998/3+1)+...+(1/4000+1)+1]/(1/2+1/3+...+1/4001)

A=(4001/2+4001/3+...+4001/4001)/(1/2+1/3+...+1/4001)

A=[4001(1/2+1/3+...+1/4001)]/(1/2+1/3+...+1/4001)

A=4001

Vậy A=4001

Bỏ 1/3 ở cuối nhé

28 tháng 4 2019

Ta có:(1+1999/2)+(1+1998/3)+...(2/1999)(có 1998 tổng<=>1998 số 1)+(2000 - 1998)+400

        = 2001/2+2001/3+...+2001/1999+402

        =2001.(1/2+1/3+...+1/1999)+402(1)

      Thay (1) vào biểu thức trên và tính(tự tính nha!,tk cho mk!!!)

6 tháng 3 2020

Còn cần không:v

29 tháng 3 2020

Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)

\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)

\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)

\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)

25 tháng 7 2017

Cách làm : Đặt 1/3 B và lấy 1/3 B + B như bài tôi đã làm cho bạn .

13 tháng 8 2015

 ====== 83/88 

15 tháng 6 2017

Tính 

a) 

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\\ =\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100}\\ \)

\(=\left(\frac{1.2.3...99}{2.3...100}\right).\left(\frac{3.4.5...101}{2.3.4...100}\right)\\ =\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

b) 

\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\\ < \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\\ \)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\\ =1-\frac{1}{n}< 1\)

15 tháng 6 2017

đờ mờ sao mày ra đề ác thế