K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) = √4. = 2(1 + 6x+ ).

Tại x = -√2, giá trị của là 2(1 + 6(-√2) + 9(

= 2(1 - 6√2 +9.2)

= 2(19 - 6√2) ≈ 21,03.

b) =

= √9.. = 3.│a│.│b - 2│.

Tại a = -2 và b = -√3, giá trị của biểu thức là 3.│-2│.│-√3 - 2│= 3.2.(√3 + 2) = 6(√3 + 2) ≈ 22,392.

3 tháng 4 2017

a) = √4. = 2(1 + 6x+ ).

Tại x = -√2, giá trị của là 2(1 + 6(-√2) + 9(

= 2(1 - 6√2 +9.2)

= 2(19 - 6√2) ≈ 21,03.

b) =

= √9.. = 3.│a│.│b - 2│.

Tại a = -2 và b = -√3, giá trị của biểu thức là 3.│-2│.│-√3 - 2│= 3.2.(√3 + 2) = 6(√3 + 2) ≈ 22,392.

15 tháng 6 2017

a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) = \(\sqrt{\left(2\left(1+6x+9x^2\right)\right)^2}\)

= \(\sqrt{\left(2\left(1-6\sqrt{2}+18\right)\right)^2}\) = \(2\left(1-6\sqrt{2}+18\right)\) = \(2\left(3\sqrt{2}-1\right)^2\)

= \(21,029\)

b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) = \(\sqrt{\left(3a\left(b-2\right)\right)^2}\) = \(\sqrt{\left(-6\left(-\sqrt{3}-2\right)\right)^2}\)

= \(\sqrt{\left(6\sqrt{3}+12\right)^2}\) = \(6\sqrt{3}+12\) = \(22,392\)

12 tháng 8 2016

a)\(A=\sqrt{2^2\left(1+6x+9x^2\right)^2}=2\left(1+6x+9x^2\right)\)

\(=2\left(3x+1\right)^2\).Tại \(x=-\sqrt{2}\)  ta có:

\(=2\cdot\left(3\cdot-\sqrt{2}+1\right)^2=2\cdot\left(1-3\sqrt{2}\right)^2=2\cdot19-6\sqrt{2}=38-12\sqrt{2}\)

b)\(B=\sqrt{9a^2\left(b^2+4-4b\right)}=\sqrt{3^2a^2\left(b^2-2\cdot2\cdot b+2^2\right)}\)

\(=\sqrt{\left(3a\right)^2\left(b-2\right)^2}\)

\(=3\cdot a\cdot\left(b-2\right)\).Tại \(a=-2;b=-\sqrt{3}\) ta có:

\(B=3\cdot\left(-2\right)\cdot\left(-\sqrt{3}-2\right)=\left(-6\right)\cdot\left(-2-\sqrt{3}\right)=12+6\sqrt{3}\)

 

 

12 tháng 8 2016

a) \(\sqrt{4\left(1+6x+9x^2\right)^2}=\sqrt{2^2.\left(3x+1\right)^4}=2.\left(3x+1\right)^2\)

Thay x vào và tính :)

b) \(\sqrt{9a^2\left(b^2-4b+4\right)}=\sqrt{\left(3a\right)^2.\left(b-2\right)^2}=\left|3a\right|.\left|b-2\right|\)

Thay a,b vào và tính :)

8 tháng 7 2021

\(b.\)

\(=\sqrt{\left(3a\right)^2\cdot\left(b-2\right)^2}\)

\(=\left|3a\right|\cdot\left|b-2\right|\)

Với : \(a=2,b=-\sqrt{3}\)

\(2\cdot3\cdot\left(-\sqrt{3}-2\right)=6\cdot\left(-\sqrt{3}-2\right)\)

8 tháng 7 2021

\(a.\)

\(=\sqrt{4\cdot\left(3x+1\right)^2}=2\cdot\left|3x+1\right|\)

Với : \(x=-\sqrt{2}\)

\(2\cdot\left|3\cdot-\sqrt{2}+1\right|=2\cdot\left|1-\sqrt{6}\right|\)

 

16 tháng 4 2021

a) Ta có: 

√4(1+6x+9x2)24(1+6x+9x2)2 =√4.√(1+6x+9x2)2=4.(1+6x+9x2)2

                                   =√4.√(1+2.3x+32.x2)2=4.(1+2.3x+32.x2)2

                                   =√22.√[12+2.3x+(3x)2]2=22.[12+2.3x+(3x)2]2

                                   =2.√[(1+3x)2]2=2.[(1+3x)2]2

                                   =2.∣∣(1+3x)2∣∣=2.|(1+3x)2|

                                   =2(1+3x)2=2(1+3x)2.

 (Vì  (1+3x)2>0(1+3x)2>0 với mọi xx  nên ∣∣(1+3x)2∣∣=(1+3x)2|(1+3x)2|=(1+3x)2)

Thay x=−√2x=−2 vào biểu thức rút gọn trên, ta được: 

                                2[1+3.(−√2)]2=2(1−3√2)22[1+3.(−2)]2=2(1−32)2.

Bấm máy tính, ta được: 2(1−3√2)2≈21,0292(1−32)2≈21,029.

b) Ta có:

√9a2(b2+4−4b)=√32.a2.(b2−4b+4)9a2(b2+4−4b)=32.a2.(b2−4b+4)

                                  =√(3a)2.(b2−2.b.2+22)=(3a)2.(b2−2.b.2+22)

                                  =√(3a)2.√(b−2)2=(3a)2.(b−2)2

                                  =|3a|.|b−2|=|3a|.|b−2|

Thay a=−2a=−2 và b=−√3b=−3 vào biểu thức rút gọn trên, ta được:

|3.(−2)|.∣∣−√3−2∣∣=|−6|.∣∣−(√3+2)∣∣|3.(−2)|.|−3−2|=|−6|.|−(3+2)|

                                     =6.(√3+2)=6√3+12=6.(3+2)=63+12.

Bấm máy tính, ta được: 6√3+12≈22,39263+12≈22,392. 



 

13 tháng 5 2021

a) Ta có: 

4(1+6x+9x2)2=4.(1+6x+9x2)2

                                       =4.(1+2.3x+32.x2)2

                                       =22.[12+2.3x+(3x)2]2

                                       =2.[(1+3x)2]2

                                       =2.|(1+3x)2|

                                       =2(1+3x)2.

 (Vì  (1+3x)2≥0 với mọi x nên |(1+3x)2|=(1+3x)2)

Thay x=−2 vào biểu thức rút gọn trên, ta được: 

2[1+3.(−2)]2=2(1−32)2.

Bấm máy tính, ta được: 2(1−32)2  21,029.

b) Ta có:

9a2(b2+4−4b)=32.a2.(b2−4b+4)

                                      =(3a)2.(b2−2.b.2+22)

                                      =(3a)2.(b−2)2

                                      =(3a)2.(b−2)2

                                      =|3a|.|b−2|

Thay a=−2 và b=−3 vào biểu thức rút gọn trên, ta được:

|3.(−2)|.|−3−2|=|−6|.|−3−2|

                                     =6.(3+2)=63+12.

Bấm máy tính, ta được: 63+12  22,392.

17 tháng 8 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

(vì (1 + 3x)2 > 0)

Thay x = √2 vào ta được:

2[1 + 3.(-√2)]2 = 2(1 - 3√2)2

= 2(1 - 6√2 + 32.2) = 2 - 12√2 + 36

= 38 - 12√2 = 38 - 12.1,414 = 38 - 16,968

= 21,032

Để học tốt Toán 9 | Giải bài tập Toán 9

Thay a = -2, b = -√3 ta được:

|3(-2)|.|-√3 - 2| = 6(√3 + 2)

= 6(1,732 + 2) = 6.3,732

= 22,392

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b) Để \(A< -\dfrac{1}{3}\) thì \(A+\dfrac{1}{3}< 0\)

\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{3}< 0\)

\(\Leftrightarrow\dfrac{-9+\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-6< 0\)

\(\Leftrightarrow x< 36\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 36\\x\ne9\end{matrix}\right.\)

a) Ta có: \(\sqrt{27\cdot48\left(1-a^2\right)}\)

\(=\sqrt{3^4\cdot4^2\cdot\left(1-a^2\right)}\)

\(=36\sqrt{1-a^2}\)

c) Ta có: \(\sqrt{5a}\cdot\sqrt{45a}-3a\)

\(=15a-3a=12a\)

b) Ta có: \(B=\dfrac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}\)

\(=\dfrac{1}{a-b}\cdot a^2\cdot\left(a-b\right)\)

\(=a^2\)

d) Ta có: \(D=\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)

\(=a^2-6a+9-\sqrt{36a^2}\)

\(=a^2-6a+9-\left|6a\right|\)

\(=\left[{}\begin{matrix}a^2-6a+9-6a\left(a\ge0\right)\\a^2-6a+9+6a\left(a< 0\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}a^2-12a+9\\a^2+9\end{matrix}\right.\)

a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)

=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)

=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)

=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)

Để BPT luôn đúng thì m<-0,3