K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Học dỏi nha :)) 
~ Good luck ~

11 tháng 6 2018

\(\sqrt{\frac{289+4\sqrt{72}}{16}}+\sqrt{\frac{129}{16}+\sqrt{2}}\)

\(=\sqrt{\frac{288+2\times12\sqrt{2}+1}{4^2}}+\sqrt{\frac{128+2\sqrt{12}+1}{4^2}}\)

\(=\sqrt{\frac{\left(\sqrt{288}+1\right)^2}{4^2}}+\sqrt{\frac{\left(\sqrt{128}+1\right)^2}{4^2}}\)

\(=\frac{\sqrt{288}+1}{4}+\frac{\sqrt{128}+1}{4}\)

\(=\frac{12\sqrt{2}+8\sqrt{2}+2}{4}\)

\(=\frac{1+10\sqrt{2}}{2}\)

\(ĐKXĐ:x\ne16\)

\(Q=\frac{1+3\sqrt{x}-12}{\sqrt{x}-4}.\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{3-\sqrt{x}-11}\)

\(=\frac{\left(3\sqrt{x}-11\right)\left(\sqrt{x}+4\right)}{-\sqrt{x}-8}\)

\(\left(\frac{1}{\sqrt{x}-4}+3\right).\frac{x-16}{3-\sqrt{x}-11}=\left(\frac{1}{\sqrt{x}-4}+\frac{3\left(\sqrt{x}-4\right)}{\sqrt{x}-4}\right).\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{-\sqrt{x}-8}\)

\(=\frac{1+3\left(\sqrt{x}-4\right)}{\sqrt{x}-4}.\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{-\sqrt{x}-8}=\frac{1+3\sqrt{x}-12}{\sqrt{x}-4}.\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{-\sqrt{x}-8}\)

\(=\frac{3\sqrt{x}-11}{\sqrt{x}-4}.\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{-\left(\sqrt{x}+8\right)}=\frac{\left(3\sqrt{x}-11\right)\left(\sqrt{x}+4\right)}{-\left(\sqrt{x}+8\right)}\)

3 tháng 8 2017

=\(\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}\)+\(\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\sqrt{2}-\sqrt{3}}\)+.....+\(\frac{\sqrt{99}-\sqrt{100}}{\left(\sqrt{99}+\sqrt{100}\right).\left(\sqrt{99}-\sqrt{100}\right)}\)

=\(\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{99}-\sqrt{100}}{99-100}\)

=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+....+\sqrt{100}-\sqrt{99}\)

=\(-1+\sqrt{100}\)

=9

24 tháng 6 2021

Xét \(\sqrt{2}.A=\sqrt{\dfrac{4+2\sqrt{3}}{2}}-\sqrt{\dfrac{4-2\sqrt{3}}{2}}\)

\(\sqrt{\dfrac{\left(1+\sqrt{3}\right)^2}{2}}-\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{2}}\)

\(\dfrac{1+\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}\)

<=> A = 1

17 tháng 8 2020

Bài làm:

a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)

\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)

\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)

\(A=4+2\sqrt{3}+5\sqrt{3}-1\)

\(A=3+7\sqrt{3}\)

b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)

\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)

\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)

\(A=2\)

17 tháng 8 2020

Phần b mình viết nhầm tên thành A, bn sửa thành B nhé

c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=\sqrt{3}-1-2-\sqrt{3}\)

\(C=-3\)

25 tháng 5 2018

1, ĐKXĐ: \(x\ge0;x\ne4\)

2, \(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{x-4}\)

\(=\frac{\left(x+3\sqrt{x}+2\right)+\left(2x-4\sqrt{x}\right)-2-5\sqrt{x}}{x-4}\)

\(=\frac{3x-6\sqrt{x}}{x-4}\)

\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

27 tháng 5 2018

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{-\left(2+5\sqrt{x}\right)}{x-4}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}\)

\(=\frac{-6\sqrt{x}+3x}{x-4}=\frac{-3\sqrt{x}\left(2-\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}\left(2-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

30 tháng 4 2020

\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}-\frac{2\sqrt{x}-1}{\sqrt{x}+2}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}-\frac{\left(2\sqrt{x}-1\right)\left(x-4\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-\left(2\sqrt{x}-1\right)\left(x-4\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\left[\frac{x+2\sqrt{x}}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(\sqrt{x+2}\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\frac{\sqrt{x}}{x-4}\cdot\frac{\sqrt{x}-2}{\sqrt{x}}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-4\right)}\)

\(A=\frac{\sqrt{x}-2}{x-4}\)