K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

chịu

a: \(=\dfrac{2a^2-6a+3a+9-3a^2-3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}\)

\(=\dfrac{-a^2-3a+6}{\left(a+3\right)}\cdot\dfrac{1}{â+1}=\dfrac{-a^2-3a+6}{\left(a+3\right)\left(a+1\right)}\)

b: |a|=2

=>a=2 hoặc a=-2

Khi a=2 thì \(A=\dfrac{-2^2-3\cdot2+6}{\left(2+3\right)\left(2+1\right)}=\dfrac{-4}{15}\)

Khi a=-2 thì \(A=\dfrac{-\left(-2\right)^2-3\cdot\left(-2\right)+6}{\left(-2+3\right)\left(-2+1\right)}=-8\)

1 tháng 1 2023

em c.ơn nhiều ạ

 

a: ĐKXĐ: a<>3; a<>-3; a<>-1

b: \(P=\dfrac{2a^2-3a+3a+9-2a^2-3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}\)

\(=\dfrac{6}{\left(a+3\right)\left(a+1\right)}\)

c: |a|=2

=>a=2 hoặc a=-2

Khi a=-2 thì \(P=\dfrac{6}{\left(-2+3\right)\left(-2+1\right)}=-6\)

Khi a=2 thì \(P=\dfrac{6}{\left(2+3\right)\left(2+1\right)}=\dfrac{6}{5\cdot3}=\dfrac{2}{5}\)

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết như thế này khó quan sát quá.

27 tháng 9 2020

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

27 tháng 9 2020

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((