Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(A=\left(7x+5\right)^2+\left(3x-5\right)^2-\left(10-6x\right)\left(5+7x\right)\)
\(=\left(7x+5\right)^2+2\cdot\left(7x+5\right)\cdot\left(3x-5\right)+\left(3x-5\right)^2\)
\(=\left(7x+5+3x-5\right)^2\)
\(=\left(10x\right)^2=100x^2\)
Thay x=-2 vào A, ta được:
\(A=100\cdot\left(-2\right)^2=100\cdot4=400\)
b) Ta có: \(B=\left(2x+y\right)\left(y^2-2xy+4x^2\right)-8x\left(x-1\right)\left(x+1\right)\)
\(=8x^3+y^3-8x\left(x^2-1\right)\)
\(=8x^3+y^3-8x^3+8x\)
\(=8x+y^3\)
Thay x=-2 và y=3 vào B, ta được:
\(B=-2\cdot8+3^3=-16+27=11\)
A= ( 2x-1) - (2x+3)(x-2) - 2(x+2)(x+5)
= (2x-1) - (2x^2 - 4x+3x-6) - (2x-4)(x+5)
= (2x-1) - (2x^2-4x+3x-6) - (2x^2+10x-4x-20)
= 2x-1-2x^2+4x-3x+6-2x^2-10x+4x+20
= -3x-4x^2+25
= -4x^2-3x+25
Với x=-3 ta có:
(-4).(-3)^2-3.(-3)+25
=-36+9+25
=-2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
\(A=\left(2x-1\right)^2-\left(2x+3\right).\left(x-2\right)-2.\left(x+2\right).\left(x+5\right)\)
\(=\left(2x-1\right)^2-\left(2x+3\right).\left(x-2\right)-2.\left(x+2\right).\left(x+5\right)\)
\(=4x^2-4x+1-2x^2-3x+4x+6-2x^2-4x-10x-20\)
\(=4x^2-2x^2-2x^2-4x-3x+4x-4x-10x+1+6-20\)
\(=0-17x-13\)
\(=-17x-13\)
Ta thay \(x=-3\) vào
\(A=-17.\left(-3\right)-13=38\)
Tìm GTNN của : \(x^2-4x+3\)
\(x^2-4x+3=x^2-4x+4-1=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2-1\ge-1\)
Vậy GTNN của biểu thức là -1 . Dấu bằng xảy ra khi x = 2
2) \(\left(2x-1\right)\left(x+5\right)-3.\left(x-2\right)^2+\left(x+4\right)\left(x-4\right)\)
\(=2x^2+10x-x-5-3.\left(x^2-4x+4\right)+x^2-16\)
\(=2x^2+9x-5-3x^2+12x-12+x^2-16=21x-33\)
Khi x = -2 thì A = 21 . (-2) -33 = -75
\(A=\left(x+3\right)\left(x-2\right)-\left(x-5\right)\left(x+5\right)\)
\(=x\left(x-2\right)+3\left(x-2\right)+25-x^2\)
\(=x^2+x-6+25-x^2\)
\(=x+19\)
Tại \(x=2\)\(\Rightarrow A=2+19=21\)