Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}=\frac{-5}{x\left(x-5\right)}\)
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+...+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+...+\frac{1}{x-4}-\frac{1}{x-5}\)
\(=\frac{1}{x}-\frac{1}{x-5}\)
\(=\frac{x-5}{x\left(x-5\right)}-\frac{x}{x\left(x-5\right)}\)
\(=\frac{x-5-x}{x\left(x-5\right)}\)
\(=-\frac{5}{x\left(x-5\right)}\)
a)\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}.\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\left(ĐKXĐ:x\ne0;-1\right)\)
\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{x+1}{x}\right)+\frac{1}{\left(x+1\right)^2}.\left(\frac{x^2+1}{x^2}\right)\right]:\frac{x-1}{x^3}\)
\(P=\left[\frac{2}{\left(x+1\right)^2x}+\frac{x^2+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{x^3}\)
\(P=\left[\frac{x^2+2x+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{3}\)
\(P=\frac{\left(x+1\right)^2}{x^2\left(x+1\right)^2}:\frac{x-1}{3}\)
\(P=\frac{3}{x^2\left(x-1\right)}\)
b)Bài này liên quan đến dấu lớn nên mk ko làm đc
-x^61+5*x^60+x^59-5*x^58-x^55+5*x^54+x^53-5*x^52-x^49+5*x^48+x^47-5*x^46x^43+5*x^42+x^41-5*x^40-x^37+5*x^36+x^35-5*x^34-x^49+5*x^48+x^47-5*x^46x^43+5*x^42+x^41-5*x^40-x^37+5*x^36+x^35-5*x^34-x^31+5*x^30+x^27-5*x^26-x^25+5*x^24+x^21-5*x^20-x^19+5*x^18+x^15-5*x^14-x^13+5*x^12+x^9-5*x^8-x^7+5*x^6+x^3-5*x^2-x+5
\(=\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)
1/ (x+1)(x+2) +1/ (x+2)(x+3) +1/ (x+3)(x+4) +1/ (x+4)(x+5)
=1/x+1 -1/x+2 +1/x+2 -1/x+3 +1/x+3 -1/x+4 +1/x+4 -1/x+5
=1/x+1 -1/x+5
=4/(x+1)(x+5)
\(\frac{1}{\left(x+1\right)\left(x+2\right)}-\frac{2}{\left(x+2\right)^2}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
\(=\frac{\left(x+3\right)\left(x+2-2x-2\right)+x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
\(=\frac{\left(x+3\right)\left(-x\right)+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
\(=\frac{-x^2-3x+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
ĐKXD: x\(\ne\)-1,-2,-3
Ta có
\(\frac{1}{\left(x+1\right)\left(x+2\right)}\)-\(\frac{2}{\left(x+2\right)^2}\)+\(\frac{1}{\left(x+2\right)\left(x+3\right)}\)
=\(\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
=\(\frac{\left(x+2\right)\left(x+3+x+1\right)-2\left(x^2+4x+3\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
=\(\frac{\left(x+2\right)\left(2x+4\right)-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
=\(\frac{2x^2+8x+8-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
=\(\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)
Chúc bạn học tốt
\(=\frac{\left(x^2+1\right)\left(x^8+2x^4+1-x^4\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\frac{\left(x^2+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)}{x^4+x^2+1}\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
\(\frac{\left(x^2+1\right)\left(x^8+x^4+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\frac{\left(x^2+1\right)\left(x^8+2x^4+1-x^4\right)}{\left(x^2+1\right)^2-x^2}\)
\(=\frac{\left(x^2+1\right)\left[\left(x^4+1\right)^2-x^4\right]}{x^4+2x^2+1-x^2}=\frac{\left(x^2+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)}{x^4+x^2+1}\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)