Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5^2+5^3+...+5^{2015}+5^{2016}\)
\(5A=5+5^3+5^4+...+5^{2016}+5^{2017}\)
\(4A=\left(5+5^3+5^4+...+5^{2016}+5^{2017}\right)-\left(1+5^2+5^3+...+5^{2015}+5^{2016}\right)\)
\(=5+5^{2017}-\left(1+5^2\right)\)
\(=4+5^{2017}-5^2\)
\(A=\frac{4+5^{2017}-5^2}{4}\)
Ta có : 5A = 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017
=> 5A - A = ( 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017 ) - ( 1 + 5^2 + 5^3 + ... + 5^2015 + 5^2016 )
=> 4A = 4 + 5^2 + 5^2017
=> A = ( 4 + 5^2 + 5^2017 )/4
\(A=\frac{2.6.10+4.12.20+6.18.30+...+20.60.100}{1.2.3+2.4.6+3.6.9+...+10.20.30}\)
=> \(A=\frac{2^3.1.3.5+4^3.1.3.5+6^3.1.3.5+...+20^3.1.3.5}{1.2.3+2^3.1.2.3+3^3.1.2.3+...+10^3.1.2.3}\)
=> \(A=\frac{1.3.5\left(2^3+4^3+6^3+...+20^3\right)}{1.2.3\left(1+2^3+3^3+...+10^3\right)}=\frac{1.5.2^3.\left(1+2^3+3^3+...+10^3\right)}{1.2.\left(1+2^3+3^3+...+10^3\right)}\)
=> \(A=5.2^2=20\)
Đáp số: A=20
\(\frac{2\cdot6\cdot10+4\cdot12\cdot20+...+20\cdot60\cdot100}{1\cdot2\cdot3+2\cdot4\cdot6+...+10\cdot20\cdot30}=\frac{10\cdot2\left(1\cdot2\cdot3+2\cdot4\cdot6+...+10\cdot20\cdot30\right)}{1\cdot2\cdot3+2\cdot4\cdot6+...+10\cdot20\cdot30}\)
\(=20\)
\(\frac{2^3.3}{2^2.3^2.5}=\frac{2}{3.5}=\frac{2}{15}\)
Thiếu dấu nhân ở chỗ \(2^2.3^2\)nha
\(\frac{38}{144}=\frac{38:2}{144:2}=\frac{19}{72}\)
\(\frac{22}{55}=\frac{22:11}{55:11}=\frac{2}{5}\)
\(\frac{21}{49}=\frac{21:7}{49:7}=\frac{3}{7}\)
\(\frac{38}{144}=\frac{19}{72}\)
\(\frac{22}{55}=\frac{2}{5}\)
\(\frac{21}{49}=\frac{3}{7}\)