Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2\cdot9\cdot8+3\cdot12\cdot10+4\cdot15\cdot12+...+98\cdot297\cdot200}{2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+...+98\cdot99\cdot100}\)
\(=\frac{2\cdot1\cdot3\cdot3\cdot4\cdot2+3\cdot1\cdot4\cdot3\cdot5\cdot2+...+98\cdot1+99\cdot3+100\cdot2}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=\frac{1\cdot3\cdot2\cdot\left(2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100\right)}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=1\cdot3\cdot2\)
\(=6\)
\(A^2=6^2=36\)
\(C=\frac{1.5.6+2.10.12+24.8.10}{1.3.5+2.6.10+8.6.20}\)
\(C=\frac{1.5.6.\left(1^3+2^3+8^2\right)}{1.3.5.\left(1^3+2^3+8^2\right)}=\frac{6}{3}=2\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
xét A có chia hết cho 6 không:
vì 2×4×6×8×10×12 chia hết cho 6
mà 40 ko chia hết cho 6
=>A không chia hết cho 6
Xét A có chia hết cho 5ko:
Vi 10 chia hết cho 5
=>2×4×6×8×10×12 chia hết cho 5
mà 40 cũng chia hết cho 5
=>A chia hết cho 5
Xét A có chia hết cho 8 không :
Vì 2×4×6×8×10×12 chia hết cho 8
mà 40 cũng chia hết cho 8
=>A chia hết cho 8
Gọi số học sinh là x.
Theo đề ta có: x : 15,20,25 dư 12 => x - 12 \(⋮\)15,20,25.
=> \(x-12\in BC\left(15,20,25\right)\)
\(\Rightarrow x-12\in\left\{0;300;600;900;1200;...\right\}\)
\(\Rightarrow x\in\left\{12;312;612;912;1212;...\right\}\)
Mà x\(⋮\)36 và x có 3 chữ số => x = 612.
Vậy có 612 học sinh tham gia đồng diễn thể dục.
a) \(\frac{9}{33-3}=\frac{1}{3}\)
b) \(\frac{7}{100+6\times100}=\frac{1}{100}\)
c) \(\frac{11\times22+33\times36+55\times60}{22\times24+66\times72+110\times120}=\frac{1}{4}\)
d) \(\frac{9^4\times27^5\times3^6\times4^4}{3^8\times81^4\times243\times8^2}=4\)
e) \(\frac{199919991999}{200020002000}=\frac{1999}{2000}\)