K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=a^3+b^3+c^3+3\left(abc+c^2a+b^2c+bc^2+a^2b+ca^2+ab^2+abc\right)\)

\(=a^3+b^3+c^3+3\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Rightarrow\)\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)

Lại có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a-b+b-c+c-a\right)^2\)

\(-2\left[\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)\right]\)

\(=-2\left(ab-ca-b^2+bc+bc-ab-c^2+ca+ca-bc-a^2+ab\right)\)

\(=2\left(a^2+b^2+c^2-ab-bc-ca\right)=2\left(a+b+c\right)^2-6\left(ab+bc+ca\right)\)

\(\Rightarrow\)\(P=\frac{\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)}{2\left(a+b+c\right)^2-6\left(ab+bc+ca\right)}\)

\(=\frac{\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]}{2\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]}=\frac{a+b+c}{2}\)

3 tháng 11 2017

Áp dụng hằng đẳng thức mà làm 

3 tháng 11 2017

Hàng đẳng thức nào

14 tháng 7 2017

quy đồng là ra

30 tháng 4 2020

\(BT=\frac{a^2\left(b-c\right)+b^2c-b^2a+c^2a-c^2b}{a^4\left(b^2-c^2\right)+b^4c^2-b^4a^2+c^4a^2-c^4b^2}\)

\(=\frac{a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^2c^2\left(b^2-c^2\right)-\left(b^4-c^4\right)a^2}\)

\(=\frac{\left(b-c\right)\left(a^2+bc-a\left(b+c\right)\right)}{\left(b^2-c^2\right)\left(a^4+b^2c^2-a^2\left(b^2+c^2\right)\right)}\)

\(=\frac{\left(a-b\right)\left(a-c\right)}{\left(b+c\right)\left(a^2-b^2\right)\left(a^2-c^2\right)}\)

\(=\frac{1}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

30 tháng 4 2020

\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)

\(\frac{a^2\left(b-c\right)+b^2c-c^2b-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^4c^2-c^4b^2-a^2\left(a^4-b^4\right)}\)

\(\frac{\left(b-c\right)\left(a-b\right)\left(c-a\right)}{\left(b^2-c^2\right)\left(a^2-b^2\right)\left(c^2-a^2\right)}\)

\(\frac{1}{\left(b+c\right)\left(a+b\right)\left(c+a\right)}\)

26 tháng 11 2021

\(B=\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)

    \(=\left(\dfrac{a-b}{a\left(a+b\right)}-\dfrac{a}{b\left(a+b\right)}\right):\left(\dfrac{b^3}{a\left(a-b\right)\left(a+b\right)}+\dfrac{1}{a+b}\right)\)

    \(=\dfrac{b\left(a-b\right)-a^2}{ab\left(a+b\right)}:\dfrac{b^3+a\left(a-b\right)}{a\left(a-b\right)\left(a+b\right)}\)

    \(=\dfrac{ab-b^2-a^2}{ab\left(a+b\right)}\cdot\dfrac{a\left(a-b\right)\left(a+b\right)}{a^2-ab+b^3}\)

    \(=\dfrac{\left(a-b\right)\left(ab-b^2-a^2\right)}{b\left(a^2-ab+b^3\right)}\)

    \(=\dfrac{-\left(a-b\right)\left(a^2-ab+b^2\right)}{b\left(a^2-ab+b^3\right)}\)

Đề lỗi rồi chứ mình ko rút gọn đc nữa

31 tháng 7 2019

\(a,A=\frac{1-\sqrt{a^3}}{a-1}=-\frac{\sqrt{a^3}-1}{a-1}.\)

\(=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{a+\sqrt{a}+1}{\sqrt{a}+1}\)

\(b,B=3\sqrt{\frac{12\left(a-2\right)^2}{27}}=\sqrt{9}.\sqrt{\frac{12\left(a-2\right)^2}{27}}\)

\(=\sqrt{\frac{9.3.4.\left(x-2\right)^2}{27}}=2\sqrt{\left(x-2\right)^2}=2.|x-2|\)

\(c,C=\left(a-b\right)\sqrt{\frac{ab}{\left(a-b\right)^2}}=\sqrt{\frac{\left(a-b\right)^2ab}{\left(a-b\right)^2}}=\sqrt{ab}\)