Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne0\)
Câu a :
\(A=\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
\(=\sqrt{\dfrac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(=\sqrt{\dfrac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
\(=\sqrt{\dfrac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(=\left|\dfrac{x^2+3}{x}\right|+\left|x-2\right|\)
\(=\left|\dfrac{x^2}{x}+\dfrac{3}{x}\right|+\left|x-2\right|\)
Câu b :
Để \(A\in Z\Leftrightarrow\left|\dfrac{x^2}{x}+\dfrac{3}{x}\right|+\left|x-2\right|\in Z\)
\(\Leftrightarrow\dfrac{3}{x}\in Z\) ( Vì \(x^2⋮x\) )
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-1\\x=1\\x=3\end{matrix}\right.\)
Vậy \(x=-3;x=-1;x=1;x=3\) thì A đạt giá trị nguyên .
Chúc bạn học tốt !!
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)
b: \(=\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)
a, \(=\left(\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)
b, với x > 0
\(=\left(\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\)
\(=-\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+2\right)\sqrt{x+1}}=\dfrac{4}{\left(\sqrt{x}+2\right)\sqrt{x^2+x}}\)
1. ĐKXĐ: $x>0; x\neq 9$
\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)
2. ĐKXĐ: $x\geq 0; x\neq 4$
\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)
\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)
1: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
2: Ta có: \(A=\left(\dfrac{x+2\sqrt{x}}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\dfrac{x+2\sqrt{x}-x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{1}{x-1}\)
3: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)
\(=\dfrac{3\sqrt{x}}{x-3}\)
f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)
\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)
Lời giải:
Đặt \((\sqrt{1+x}=a; \sqrt{1-x}=b)\)
\(\Rightarrow a^2+b^2=2\) và \(a^2-b^2=2x\)
Khi đó:
\(M=\frac{\sqrt{1+ab}(a^3-b^3)}{2+ab}=\frac{\sqrt{1+ab}(a-b)(a^2+ab+b^2)}{a^2+b^2+ab}\)
\(=\sqrt{1+ab}(a-b)\)
\(=\sqrt{\frac{a^2+b^2}{2}+ab}(a-b)=\sqrt{\frac{a^2+b^2+2ab}{2}}(a-b)\)
\(=\sqrt{\frac{(a+b)^2}{2}}(a-b)=\frac{(a+b)(a-b)}{\sqrt{2}}=\frac{a^2-b^2}{\sqrt{2}}=\frac{2x}{\sqrt{2}}=\sqrt{2}x\)
\(M=\dfrac{\sqrt{1+\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]}{2+\sqrt{1-x^2}}\)
\(\Leftrightarrow M=\dfrac{\sqrt{2}.\sqrt{1+\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)
\(\Leftrightarrow M=\dfrac{\sqrt{2+2\sqrt{1-x^2}}\left[(\sqrt{\left(1+x\right)})^3-(\sqrt{\left(1-x\right)})^3\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)
\(\Leftrightarrow M=\dfrac{\sqrt{\left(1-x\right)+2\sqrt{\left(1-x\right)\left(1+x\right)}+(1+x)}.\left[(\sqrt{1+x})^3-\left(\sqrt{1-x}\right)^3\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)
\(\Leftrightarrow M=\dfrac{\sqrt{(\sqrt{1+x}+\sqrt{1-x})^2}.\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(\sqrt{1+x}\right)^2+\sqrt{1+x}\sqrt{1-x}+\left(\sqrt{1-x}^2\right)\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)
\(\Leftrightarrow M=\dfrac{\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[1+x+\sqrt{1-x^2}+1-x\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)
\(\Leftrightarrow M=\dfrac{(1+x-1+x)\left[2+\sqrt{1-x^2}\right]}{\sqrt{2}.(2+\sqrt{1-x^2})}\)
\(\Leftrightarrow M=\dfrac{2x}{\sqrt{2}}\)
\(\Leftrightarrow M=\sqrt{2}x\)