Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem kỹ lại đề nhé! loại này đề lệch một tý thôi -->Không rút được !
p/s: Tránh truongf hợp làm đến cuối mới biết đề sai.
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}\)
\(+...+\frac{\left(\sqrt{25}-\sqrt{24}\right)\left(\sqrt{25}+\sqrt{24}\right)}{\sqrt{24}+\sqrt{25}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{25}-\sqrt{24}\)
\(=\sqrt{25}-1=5-1=4\)
\(\frac{1}{\sqrt{1}\sqrt{2}}+\frac{1}{\sqrt{2}\sqrt{3}}+...+\frac{1}{\sqrt{24}\sqrt{25}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}\)
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
Ta có:
\(A=\frac{1}{\sqrt{2}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{2}}+...+\frac{1}{\sqrt{25}+\sqrt{24}}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{25}-\sqrt{24}}{25-24}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+...+\frac{\sqrt{25}-\sqrt{24}}{1}\)
\(=5-1=4\)
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}\)
Ta thấy: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2015}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{2015}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{2015}}\)
.........................
\(\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+...+\frac{1}{\sqrt{2015}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2014}}+\frac{1}{\sqrt{2015}}>\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+...+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}\)
=>\(A>2015.\frac{1}{\sqrt{2015}}=\frac{2015}{\sqrt{2015}}=\sqrt{2015}\)
Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}>\sqrt{2015}\)
Trục căn thức:
\(C=\frac{\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+...+\)
\(+\frac{\left(\sqrt{2017}-\sqrt{2015}\right)}{\left(\sqrt{2017}+\sqrt{2015}\right)\left(\sqrt{2017}-\sqrt{2015}\right)}\)
\(C=\frac{\sqrt{3}-1}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+...+\frac{\sqrt{2017}-\sqrt{2015}}{2017-2015}\)
\(C=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+...+\frac{\sqrt{2017}-\sqrt{2015}}{2}\)
\(C=\frac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2015}}{2}\)
\(C=\frac{\sqrt{2017}-1}{2}\)