K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:

\(\frac{2x-2\sqrt{x}+2}{x-\sqrt{x}}=\frac{2(x-\sqrt{x})+2}{x-\sqrt{x}}=\frac{2(x-\sqrt{x})+2}{x-\sqrt{x}}=2+\frac{2}{x-\sqrt{x}}\)

\(\dfrac{2x-2\sqrt{x}+2}{x\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+1}\)

\(\dfrac{2x-2\sqrt{x}+2}{x\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+1}\)

4 tháng 9 2021

giải chi tiết hộ e với ạ

 

NV
12 tháng 9 2021

ĐKXĐ: \(x\ge0;x\ne4\)

\(A=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}-\dfrac{12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

NV
12 tháng 9 2021

ĐKXĐ: \(x\ge0;x\ne3\)

\(B=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3\sqrt{x}-3}{x-9}\)

9 tháng 9 2021

\(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ D=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\\ D=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(C=\left(\dfrac{3}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{3+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{1}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)

\(=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}+1}\)

9 tháng 9 2021

\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0;x\ne25\right)\\ A=\dfrac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\\ A=\dfrac{5+\sqrt{x}}{\sqrt{x}+5}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+1}\)

23 tháng 9 2021

\(ĐK:x>0;x\ne4\\ B=\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\\ B=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\\ B=\dfrac{x+2\sqrt{x}+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ B=\dfrac{x+4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x+3\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+4\sqrt{x}}{x-4}\)

4 tháng 9 2021

a, ĐK: \(x>0\)

\(\dfrac{x-5\sqrt{x}}{x+3\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)

4 tháng 9 2021

b, ĐK: \(x\ge0;x\ne1\)

\(\dfrac{x+\sqrt{x}}{x-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

23 tháng 9 2021

\(P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+7}{4-x}\left(x>0;x\ne4\right)\\ P=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\\ P=\dfrac{\sqrt{x}+6-x-x-3\sqrt{x}-2+2\sqrt{x}+7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ P=\dfrac{-2x+11}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ P=\dfrac{-2x\sqrt{x}+11\sqrt{x}+\left(\sqrt{x}+2\right)\left(x-4\right)}{\sqrt{x}\left(x-4\right)}\)

\(P=\dfrac{-2x\sqrt{x}+11\sqrt{x}+x\sqrt{x}-4\sqrt{x}+2x-8}{\sqrt{x}\left(x-4\right)}\\ P=\dfrac{-x\sqrt{x}+8\sqrt{x}+2x-8}{\sqrt{x}\left(x-4\right)}\)