Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-\left(3-11\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
b/ \(P< 1\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}-3}< 1\Rightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
Xét 2 trường hợp:
- \(\hept{\begin{cases}2\sqrt{x}+3>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\hept{\begin{cases}2\sqrt{x}>-3\\\sqrt{x}< 3\end{cases}\Rightarrow}\hept{\begin{cases}\sqrt{x}>-\frac{3}{2}\\\sqrt{x}< 3\end{cases}}\Rightarrow-\frac{3}{2}< \sqrt{x}< 3}\)
\(\Rightarrow-\frac{9}{4}< x< 9\)
- \(\hept{\begin{cases}2\sqrt{x}+3< 0\\\sqrt{x}>3\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x}< -\frac{3}{2}\\\sqrt{x}>3\end{cases}}}\) (vô lí)
Vậy -9/4 < x < 9
mk làm luôn.
a)\(A=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
=\(\frac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)
=\(\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(\frac{3.\left(x+\sqrt{x}\right).\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right).3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
mk làm phần rút gọn xong mk bận nên bn tự làm câu b nha ^^
a) Ta có: \(A=\sqrt{3+2\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)
\(=\sqrt{1+2\cdot1\cdot\sqrt{2}+2}-\frac{1}{1+\sqrt{2}}\)
\(=\sqrt{\left(1+\sqrt{2}\right)^2}-\frac{1}{1+\sqrt{2}}\)
\(=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}\)
\(=\frac{\left(1+\sqrt{2}\right)^2}{1+\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)
\(=\frac{1+2\sqrt{2}+2-1}{1+\sqrt{2}}\)
\(=\frac{2\sqrt{2}+2}{1+\sqrt{2}}\)
\(=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2\)
b) Ta có: \(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{3}{\sqrt{x}-3}\right)\cdot\frac{\sqrt{x}+3}{x+9}\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\frac{1}{\sqrt{x}-3}\)
\(=\frac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)
\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)
\(=\frac{1}{\sqrt{x}-3}\)(đpcm)
Lời giải:
$A=\frac{10\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+4)}-\frac{(2\sqrt{x}-3)(\sqrt{x}-1)}{(\sqrt{x}+4)(\sqrt{x}-1)}-\frac{(\sqrt{x}+1)(\sqrt{x}+4)}{(\sqrt{x}-1)(\sqrt{x}+4)}$
$=\frac{10\sqrt{x}-(2\sqrt{x}-3)(\sqrt{x}-1)-(\sqrt{x}+1)(\sqrt{x}+4)}{(\sqrt{x}+4)(\sqrt{x}-1)}$
$=\frac{-3x+10\sqrt{x}-7}{(\sqrt{x}+4)(\sqrt{x}-1)}$
$=\frac{-(\sqrt{x}-1)(3\sqrt{x}-7)}{(\sqrt{x}+4)(\sqrt{x}-1)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}$
a) \(=\frac{x^2-\sqrt{3^2}}{x+\sqrt{3}}=\frac{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)
\(=\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}=a+\sqrt{a+1}\)