K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

\(x.\left(x-y\right)-\left(x+y\right).\left(x-y\right)=\left(x-y\right).\left(x-x-y\right)=-y.\left(x-y\right)\)

\(2a\left(a-1\right)-2.\left(a+1\right)^2=2.\left[a.\left(a-1\right)-\left(a+1\right)^2\right]=2.\left(a^2-a-a^2-2a-1\right)=-2.\left(3a+1\right)\)\(\left(x+2\right)^2-\left(x-1\right)^2=\left(x+2-x+1\right).\left(x+2+x-1\right)=3.\left(2x+1\right)\)

\(x.\left(x-3\right)^2-x.\left(x+5\right).\left(x-2\right)=x.\left[\left(x-3\right)^2-\left(x+5\right).\left(x-2\right)\right]=x.\left(x^2-6x+9-x^2-3x+10\right)=x.\left(19-9x\right)\)

9 tháng 8 2018

Cảm ơn bạn nha!

8 tháng 8 2018

1) \(x\left(x-y\right)+\left(x+y\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(x+x+y\right)\)

\(=\left(x-y\right)\left(2x+y\right)\)

2) \(2a\left(a-1\right)-2\left(a+1\right)^2\)

\(=2\left[a\left(a-1\right)-\left(a+1\right)^2\right]\)

\(=2\left(a^2-a-a^2-2a-1\right)\)

\(=2\left(-3a-1\right)\)

3) \(\left(x+2\right)^2-\left(x-1\right)^2\)

\(=\left(x+2-x+1\right)\left(x+2+x-1\right)\)

\(=3\left(2x+1\right)\)

4) \(x\left(x-3\right)^2-x\left(x+5\right)\left(x-2\right)\)

\(=x\left[\left(x-3\right)^2-\left(x+5\right)\left(x-2\right)\right]\)

\(=x\left[\left(x^2-6x+9\right)-\left(x^2+3x-10\right)\right]\)

\(=x\left(x^2-6x+9-x^2-3x+10\right)\)

\(=x\left(-9x+19\right)\)

9 tháng 8 2018

Cảm ơn bạn nha

13 tháng 7 2018

a, (x-y)^3 -(x+y)^3

= x^3 -3x^2 y +3xy^2 -y^3 -(x^3 +3x^2 y +3xy^2 +y^3)

= -6x^2 y -2 y^3

b, = x(x^2 -1) -(x^3 +1)

    = x^3 -x -x^3 -1

    = -x -1

c, = x^2 -10x +25 +x^2 + 10x+ 25 -2x^2

    = 50

d, = x^3 + 3x^2 y + 3xy^2 + y^3 -3x^2 y -3xy^2

    = x^3 + y^3

17 tháng 7 2018

Bài 1: Tìm giá trị nhỏ nhất của biểu thức sau
a) P= x2-6x+5
b) Q= 4x2+4x-1
c) M= x2-x
d) N=x2+x+4
e) H= x2+3x+5
f) F= x2-5x
Bài 2 Tính giá trị của biểu thức sau
a) x3+9x2+27x+27 tại x= -103
b)x3-45x2+75x tại x =25
c) x2+8x tại x= -14
Bài 3 Tìm x, biết
a) (x+3)2-x(3x+1)2+(2x+1)(4x2-2x+1-3x2) =54
b) (x-3)2 -(x-3)(x2+3x+9)+6(x+1)2+3x= -33
c) 6(x+1)2-2(x+1)3+2(x-1)(x2+x+1)=1

a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)

b: \(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)

d: \(=9x^2+6x+1-9x^2+6x-1=12x\)

29 tháng 12 2021

a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)

e: \(=x^3+1-x^3+1=2\)

Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá...
Đọc tiếp

Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá trị của biển x a) 9x² - 6x +2 b) x² + x + 1 Bài 7: Tìm GTNN của: a)A=x-3x+5 Bài 8: Tìm GTLNcủa: a) A = 4 - x² + 2x Bài 9: Tính giá trị của biểu thức A = x³+ 12x²+ 48x + 64 tai x = 6 C=x+9x+27x + 27 tại x= - 103 c) 2x² + 2x + 1. b) B = (2x - 1)² + (x + 2)² b) B = 4x - x² B=x −6x + 12x – 8 tại x = 22 D=x³15x² + 75x - 125 tai x = 25 Bài 10.Tìm x biết: a) (x - 3)(x + 3x +9)+x(x + 2)2 - x)=1 b)(x+1)- (x - 1) - 6(x - 1}} = Bài 11: Rút gọn: a) (x - 2) - x(x + 1)(x - 1) + 6x(x - 3) b)(x - 2)(x - 2x+4)(x+2)(x+2x+

1

Bài 8:

Ta có: \(A=-x^2+2x+4\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=1

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)

9 tháng 9 2020

a)   \(=5x^2+40x+80+4\left(x^2-10x+25\right)-9\left(x+4\right)\left(x-4\right)\)

\(=5x^2+40x+80+4x^2-40x+100-9x^2+144\)

\(=9x^2-9x^2+40x-40x+324\)

\(=324\)

b)   \(=x^2+4xy+4y^2+4x^2-4xy+y^2-5x^2+5y^2-10y^2+90\)

\(=5x^2-5x^2+10y^2-10y^2+\left(4xy-4xy\right)+90\)

\(=90\)

c)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\)

\(=\left(2a^2-2a^2\right)+\left(2b^2-2b^2\right)+2c^2+4ab-4ab+2\left(ac+bc-ac-bc\right)\)

\(=2c^2\)

9 tháng 9 2020

a) 5( x + 4 )2 + 4( x - 5 )2 - 9( 4 + x )( x - 4 )

= 5( x2 + 8x + 16 ) + 4( x2 - 10x + 25 ) - 9( x2 - 16 )

= 5x2 + 40x + 80 + 4x2 - 40x + 100 - 9x2 + 144

= ( 5x2 + 4x2 - 9x2 ) + ( 40x - 40x ) + ( 80 + 100 + 144 )

= 324

b) ( x + 2y )2 + ( 2x - y )2 - 5( x + y )( x - y ) - 10( y + 3 )( y - 3 )

= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5( x2 - y2 ) - 10( y2 - 9 )

= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5x2 + 5y2 - 10y2 + 90

= ( x2 + 4x2 - 5x2 ) + ( 4xy - 4xy ) + ( 4x2 + y2 + 5y2 - 10y2 ) + 90

= 90

c) ( a + b + c )2 + ( a + b - c )2 - 2( a + b )2

= [ ( a + b ) + c ]2 + [ ( a + b ) - c ]2 - 2( a + b )2

=  ( a + b )2 + 2( a + b )c + c2 + ( a + b )2 - 2( a + b )c + c2 - 2( a + b )2

= [ ( a + b )2 + ( a + b )2 - 2( a + b )2 ] + [ 2( a + b )c - 2( a + b )c ] + ( c2 + c2 )

= 2c2