K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

\(A=\sqrt{64a^2}\cdot2a=\sqrt{\left(8a\right)^2}\cdot2a=\left|8a\right|\cdot2a\)

Với a < 0 A = 8a.(-2a) = -16a2

Với a ≥ 0 A = 8a.2a = 16a2

\(B=3\sqrt{9a^6}-6a^3=3\sqrt{\left(3a^3\right)^2}-6a^3=9\left|a^3\right|-6a^3\)

25 tháng 8 2018

\(a,\sqrt{64a^2}+2a\left(a\ge0\right)\\ < =>\sqrt{8^2.a^2}+2a\\ < =>\sqrt{\left(8a\right)^2+2a}\\ < =>\left|8a\right|+2a\\ < =>8a+2a\\ < =>10a\left(TM\right)vìa\ge0\)

\(b,3\sqrt{9a^6}-6a^3\left(a\in R\right)\\ < =>3\sqrt{\left(3a^2\right)^2}-6a^3\\ < =>3\left|3a^3\right|-6a^3\\ \)

Nếu \(a\ge0\) thì giá trị của biểu thức là:

\(3.3a^2-6a^2\\ =9a^3-6a^3\\ =3a^3\)

Nếu a<0 thì giá trị của biểu thức là:

\(3\left(-3a^3\right)-6a^3=-9a^3\\ =-6a^3=-15a^3\)

\(c,\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\left(a\ge3\right)\\ =\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\\ =\left|a+3\right|+\left|a-3\right|\\ =a+3+a-3\\ =2a\)

1 tháng 1 2023

\(A=2\sqrt{3}+\sqrt{\left(2+\sqrt{3}\right)^2}\\ =2\sqrt{3}+\left|2+\sqrt{3}\right|\\ =2\sqrt{3}+2+\sqrt{3}\\ =3\sqrt{3}+2\)

14 tháng 9 2021

undefined

AH
Akai Haruma
Giáo viên
10 tháng 6 2021

Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.

10 tháng 6 2021

tớ hi vọng cậu thông cảm cho tớ, tớ không sử dụng kí hiệu tốt được