Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(33^{2x}:11^{2x}=81\)\(\Leftrightarrow\left(33:11\right)^{2x}=81\)
\(\Leftrightarrow3^{2x}=3^4\)\(\Leftrightarrow2x=4\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
b) \(\frac{x}{-5}=\frac{4}{21}\)\(\Leftrightarrow21x=-20\)\(\Leftrightarrow x=\frac{-20}{21}\)
Vậy \(x=\frac{-20}{21}\)
Bài 2:
\(A=\frac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+\left(3^2+3^6+3^{10}+3^{14}\right)}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+3^2.\left(1+3^4+3^8+3^{12}\right)}\)
\(=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right).\left(1+3^2\right)}=\frac{1}{1+3^2}=\frac{1}{1+9}=\frac{1}{10}\)
\(33^{2x}:11^{2x}=81\)!
\(\left(33:11\right)^{2x}=81\)
\(3^{2x}=81\)
\(3^{2x}=3^4\)
\(2x=4\)
\(x=4:2\)
\(x=2\)
vậy \(x=2\)
\(\frac{x}{-5}=\frac{4}{21}\)
x.21=-5.4
x.21=-20
x=-20:21
\(x=-\frac{20}{21}\)
vậy \(x=-\frac{20}{21}\)
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
Câu 3:
a) \(\dfrac{12}{36}=\dfrac{12:12}{36:12}=\dfrac{1}{3}\)
\(\dfrac{-16}{20}=\dfrac{-16:4}{20:4}=\dfrac{-4}{5}\)
b) \(\dfrac{21}{105}=\dfrac{21:21}{105:21}=\dfrac{1}{5}\)
\(\dfrac{35}{150}=\dfrac{35:5}{150:5}=\dfrac{7}{30}\)
Câu 4:
a) \(\dfrac{3}{10}+\dfrac{5}{10}=\dfrac{3+5}{10}=\dfrac{8}{10}=\dfrac{4}{5}\)
b) Ta có: \(\left(-27\right)\cdot36+64\cdot\left(-27\right)+23\cdot\left(-100\right)\)
\(=\left(-27\right)\cdot\left(64+36\right)+23\cdot\left(-100\right)\)
\(=-27\cdot100-23\cdot100\)
\(=100\left(-27-23\right)\)
\(=-50\cdot100=-5000\)
c) \(\dfrac{5}{8}+\dfrac{3}{12}=\dfrac{15}{24}+\dfrac{6}{24}=\dfrac{21}{24}=\dfrac{7}{8}\)
d) Ta có: \(\dfrac{-2}{17}+\dfrac{3}{19}+\dfrac{-15}{17}+\dfrac{16}{19}+\dfrac{5}{6}\)
\(=\left(-\dfrac{2}{17}+\dfrac{-15}{17}\right)+\left(\dfrac{3}{19}+\dfrac{16}{19}\right)+\dfrac{5}{6}\)
\(=-1+1+\dfrac{5}{6}\)
\(=\dfrac{5}{6}\)