K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2021

\(\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right).\left(\dfrac{\sqrt[3]{x^2}-4}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)

\(\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}{2+\sqrt[3]{x}}:\left(\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\dfrac{\sqrt[3]{x^2}}{\sqrt[3]{x}-2}.\left(\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\right)\)

\(\dfrac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}{2+\sqrt[3]{x}}.\dfrac{2+\sqrt[3]{x}}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}+\dfrac{\sqrt[3]{x^2}}{\sqrt[3]{x}-2}.\dfrac{\sqrt[3]{x}-2}{\sqrt[3]{x}}\)

\(=\sqrt[3]{x}-2+\sqrt[3]{x}=2\sqrt[3]{x}-2\)

\(=\dfrac{3x+9\sqrt{x}+4x-12\sqrt{x}-7x+3}{x-9}:\dfrac{2\sqrt{x}-4-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{3\sqrt{x}+3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}=\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

b) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

c) Để \(P< -\dfrac{1}{2}\) thì \(P+\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

\(\Leftrightarrow x< 9\)

Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

4 tháng 6 2021

a) ĐK: x ≥ 0; x ≠ 9; x≠4

P= \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{x-5\sqrt{x}+6}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)

\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)

=\(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{\left(x+2\right)\left(x-2\right)-x^2+\sqrt{x}+6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)

=\(\dfrac{x-4+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{x^2-4-x^2+\sqrt{x}+6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)

=\(\dfrac{x-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+2}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)

=\(\dfrac{x-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\dfrac{\left(x-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}+2}\)

=\(\dfrac{\left(x-1\right)\left(x-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\dfrac{x^2-3x+2}{x-4}\)

b)  P ≤ -2

⇒ \(\dfrac{x^2-3x+2}{x-4}\) ≤ -2

⇔ \(\dfrac{x^2-3x+2}{x-4}\) + 2 ≤ 0

⇔ \(\dfrac{x^2-3x+2+2\left(x-4\right)}{x-4}\) ≤ 0

⇔ \(\dfrac{x^2-3x+2+2x-8}{x-4}\) ≤ 0

\(\dfrac{x^2-x-6}{x-4}\) ≤ 0

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-x-6\ge0\\x-4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-x-6\le0\\x-4>0\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}x\le2\\3\le x< 4\end{matrix}\right.\)

Vậy.......

12 tháng 5 2021

\(\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\) Đk: \(\left\{{}\begin{matrix}x>0\\x\ne9\end{matrix}\right.\)

\(\dfrac{2\sqrt{x}+x+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

 

\(=\dfrac{\left(2-\sqrt[3]{x}\right)\left(4+2\sqrt[3]{x}+\sqrt[3]{x^2}\right)}{2-\sqrt[3]{x^2}}:\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}+\dfrac{\sqrt[3]{x^2}}{\sqrt[3]{x}-2}\cdot\dfrac{\sqrt[3]{x^2}-4}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\)

\(=\dfrac{\left(2-\sqrt[3]{x}\right)\left(2+\sqrt[3]{x}\right)}{2-\sqrt[3]{x^2}}+\dfrac{\sqrt[3]{x^2}\cdot\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\)

\(=1+\sqrt[3]{x}\)

10 tháng 8 2021

\(x\ge0,x\ne9\)

\(A=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right]:\)

\(\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(A=\left[\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right].\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(A=\dfrac{-3\left(\sqrt{x}+1\right).\left(\sqrt{x}-3\right)}{\left(x-9\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)