K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2022

\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)

\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)

\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)

8 tháng 8 2021

a) \(P=\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}=\dfrac{\sqrt{5}+2+\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\dfrac{2\sqrt{5}}{\left(\sqrt{5}\right)^2-2^2}=2\sqrt{5}\)

b)\(Q=\left(1+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\cdot\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{x}-1+\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}\)

\(Q=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)

Tick hộ nha

8 tháng 8 2021

ok

19 tháng 5 2021

undefined

19 tháng 5 2021

chữ xấu quá

19 tháng 5 2021

dễ thì làm cho ngta đi

 

19 tháng 5 2021

\(\dfrac{\sqrt{X}-4}{-4}\)ĐÁP ÁN A

B TỰ THAY 

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

Ta có: \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\)

\(=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{2\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)}{2\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{8x-8\sqrt{x}+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}-2-\sqrt{x}+2}\)

\(=\dfrac{16x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{2\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{2\left(16-8\sqrt{x}\right)}{\sqrt{x}+2}\)

\(=\dfrac{32-16\sqrt{x}}{\sqrt{x}+2}\)