Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không dùng bảng số hay máy tính , hãy tính :
A =\(\sin^235+\tan22+\sin^255-\cot13\div\tan17-\cot68\)
a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)
=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)
=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)
b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)
=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)
=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)
c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)
\(=\left(\sin^212^0+\sin^278^0\right)+\left(\sin^270^0+\sin^220^0\right)-\left(\sin^235^0+\sin^255^0\right)+\sin^230^0\)
\(=1+1-1+\dfrac{1}{4}=1+\dfrac{1}{4}=\dfrac{5}{4}\)
\(\sin^225^o+\sin^265^o-\tan35^o+\cot55^o-\frac{\cot32^o}{tan58^o}\)
\(=\cos^265^o+\sin^265^o-\cot55^{^{ }o}+\cot55^o-\frac{\tan58^o}{\tan58^o}\)
\(=1-0-1\)
\(=0\)
nhớ k cho mik nha ^^
Áp dụng tính chất 2 góc phụ nhau nha bạn.
\(\sin^235^0+\tan22^0-\dfrac{\cot13^0}{\tan77^0}-\cot68^0+\sin^255\)
\(=\left(\sin^235^0+\sin^255^0\right)+\left(\tan22^0-\cot68^0\right)-\dfrac{\cot13^0}{\tan77^0}\)
\(=\left(\sin^235^0+cos^235^0\right)+\left(\tan22^0-\tan22^0\right)-\dfrac{\cot13^0}{\cot13^0}\)
\(=1+0-1=0\)