K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2

=> B x 2 = 2101 - 2100 + 299 -  298  + ...23 - 22

=> B x 2 + B = (2101 - 2100 + 299 -  298  + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)

  <=>  B x 3 = 2101 - 2 = 2. ( 299 - 1)

=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)

Phần c) Làm tương tự Lấy C x 3 rồi + với C.

Số các số hạng là:

(2000 - 100) : 1 + 1 = 1901

Tổng là:

(2000 + 100) x 1901 : 2 = 1996050

Đáp số : 1996050

= [(2000-100)+1]: 2 x (2000+100)= 1996050

25 tháng 6 2017

\(A=\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+...+1^2\right)\)

\(=100^2+98^2+...+2^2-99^2-97^2-...-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=1\cdot\left(100+99\right)+1\cdot\left(98+97\right)+...+1\cdot\left(2+1\right)\)

\(=1\cdot\left(100+98+98+...+2+1\right)\)

\(=\dfrac{100\cdot\left(100+1\right)}{2}=5050\)

4 tháng 10 2016

nhóm 4 số thành 1 cặp 100+99-98-97=4

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow A+2A=2^{101}-2\)

  \(A\left(1+2\right)=2^{101}-2\)

  \(A.3=2^{101}-2\)

  \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)

\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)

\(\Rightarrow B+3B=3^{101}-3\)

\(B\left(1+3\right)=3^{101}-3\)

\(4B=3^{101}-3\)

   \(B=\frac{3^{101}-3}{4}\)

2 tháng 7 2018

a, \(A=...\)

=>\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=>\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=>\(3A=2^{101}-2\)

=>\(A=\frac{2^{101}-2}{3}\)

b, tương tự a \(B=\frac{3^{101}+1}{4}\)

11 tháng 12 2015

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)

\(2A+A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

b) tương tự

\(B=\frac{3^{101}+1}{4}\)

22 tháng 8 2016

A = 2100 - 299 + 298 - 297 + ... + 22 - 2

   = ( 2100 + 298 + ... + 2) - ( 299 + 297 + ... + 2 )

   = ( 2100 + 298 + ... + 2) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )

   = 299 + 297 + ... + 2 

=> 4A = 2103 + 299 + ... + 23

=> 3A = 2103 - 2

=> A = \(\frac{2^{103}-2}{3}\)