Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}\)
\(ĐK:x\ne\pm y\)
\(=\dfrac{2\left|x+y\right|}{2\left(x+y\right)\left(x-y\right)}=\dfrac{\sqrt{3}\left|x+y\right|}{\left(x+y\right)\left(x-y\right)}\)
Nếu x > -y thì x + y > 0 , ta có :\(\dfrac{\sqrt{3}}{x-y}\)
Nếu x < -y thì x + y < 0 , ta có :\(\dfrac{-\sqrt{3}}{x-y}\)
a) \(P=\dfrac{\left(x^2+2xy+9y^2\right)-\left(x+3y-2\sqrt{xy}\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x^2+6xy+9y^2\right)-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x+3y\right)^2-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x+3y\right)\left(x+3y-2\sqrt{xy}\right)}{x+3y-2\sqrt{xy}}\)
\(P=x+3y\)
b) \(\dfrac{P}{\sqrt{xy}+y}=\dfrac{x+3y}{\sqrt{xy}+y}=\dfrac{\left(x+3y\right):y}{\left(\sqrt{xy}+y\right):y}=\dfrac{\dfrac{x}{y}+3}{\sqrt{\dfrac{x}{y}}+1}\)
Đặt \(t=\sqrt{\dfrac{x}{y}}>0\) và \(\dfrac{P}{\sqrt{xy}+y}=Q\) thì \(Q=\dfrac{t^2+3}{t+1}=\dfrac{\left(t-1\right)^2+2\left(t+1\right)}{t+1}=2+\dfrac{\left(t-1\right)^2}{t+1}\ge2\)
\(Q_{min}=2\Leftrightarrow t=1\Leftrightarrow x=y\)
Có \(\frac{2}{x^2-y^2}\sqrt{\frac{9\left(x+2xy+y\right)}{4}}\)
=\(\frac{2}{\left(x+y\right)\left(x-y\right)}\sqrt{\frac{3^2.\left(x+y\right)^2}{2^2}}\)
=\(\frac{2}{\left(x+y\right)\left(x-y\right)}\frac{\sqrt{3^2}.\sqrt{\left(x+y\right)^2}}{\sqrt{2^2}}\)
=\(\frac{2}{\left(x+y\right)\left(x-y\right)}.\frac{3.\left(x+y\right)}{2}\)
=\(\frac{2.3.\left(x+y\right)}{\left(x+y\right)\left(x-y\right).2}\) =\(\frac{3}{x-y}\)
\(\dfrac{x+y}{y}.\sqrt{\dfrac{x^3y^2+2x^3y^2+xy^4}{x^2+2xy+y^2}}\\ =\dfrac{x+y}{y}.\sqrt{\dfrac{3x^3y^2+xy^4}{x^2+2xy+y^2}}\\ =\dfrac{x+y}{y}.\dfrac{\sqrt{3x^3y^2+xy^4}}{\sqrt{x^2+2xy+y^2}}\\ =\dfrac{x+y}{y}.\dfrac{\sqrt{3x^3y^2+xy^4}}{\sqrt{\left(x+y\right)^2}}\\ =\dfrac{x+y}{y}.\dfrac{\sqrt{3x^3y^2+xy^4}}{x+y}\\ =\dfrac{1}{y}.\sqrt{3x^3y^2+xy^4}\)