K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2023

\(\dfrac{5-2\sqrt{5}}{\sqrt{5}}-\left(5\sqrt{5}-3\right)+\sqrt{80}\\ =\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}}-5\sqrt{5}+3+4\sqrt{5}\\ =\sqrt{5}-2-5\sqrt{5}+3+4\sqrt{5}\\ =\sqrt{5}\left(1-5+4\right)-2+3\\ =0+1\\ =1\)

30 tháng 6 2023

loading...  

\(=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{5}+1}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{5}+1}\)

\(=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\)

\(=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{4}\)

\(=\sqrt{2}\cdot\dfrac{2}{4}=\dfrac{1}{\sqrt{2}}\)

a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)

\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)

=7-2

=5

d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)

\(A=\dfrac{\sqrt{6+2\sqrt{5}}}{2-\sqrt{6-2\sqrt{5}}}-\dfrac{\sqrt{6-2\sqrt{5}}}{2+\sqrt{6+2\sqrt{5}}}\)

\(=\dfrac{\sqrt{5}+1}{2-\sqrt{5}+1}-\dfrac{\sqrt{5}-1}{3+\sqrt{5}}\)

\(=\dfrac{\left(3+\sqrt{5}\right)\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\left(3-\sqrt{5}\right)}{4}\)

\(=\dfrac{3\sqrt{5}+3+5+\sqrt{5}-3\sqrt{5}+5+3-\sqrt{5}}{4}\)

\(=4\)

a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}\)

\(=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

26 tháng 10 2021

\(=\dfrac{8+2\sqrt{15}+8-2\sqrt{15}}{2}\)

=8

26 tháng 10 2021

nhân liên hợp lên là ra nha bạn! ('ω')

5 tháng 7 2021

Bài 1 :

a, ĐKXĐ : \(\dfrac{2x+1}{x^2+1}\ge0\)

\(x^2+1\ge1>0\)

\(\Rightarrow2x+1\ge0\)

\(\Rightarrow x\ge-\dfrac{1}{2}\)

Vậy ...

b, Ta có : \(\sqrt[3]{-27}+\sqrt[3]{64}-\sqrt[3]{-\dfrac{128}{2}}\)

\(=-3+4-\left(-4\right)=-3+4+4=5\)

5 tháng 7 2021

Bài 2 :

\(a,=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)

\(=\sqrt{5}\left(2+6+5-12\right)=\sqrt{2}\)

\(b,=\sqrt{5}+\sqrt{5}+\left|\sqrt{5}-2\right|\)

\(=2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}-2\)

\(c,=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

\(=\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\)

\(=3\)

NV
1 tháng 8 2021

Chắc đề là: \(\dfrac{\sqrt{2}}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}-\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{4}-\sqrt{\dfrac{6+2\sqrt{5}}{4}}\)

\(=\dfrac{\sqrt{10}-\sqrt{2}}{4}-\sqrt{\left(\dfrac{\sqrt{5}+1}{2}\right)^2}=\dfrac{\sqrt{10}-\sqrt{2}}{4}-\dfrac{\sqrt{5}+1}{2}=\dfrac{\sqrt{10}-\sqrt{2}-2\sqrt{5}-2}{4}\)