K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 6 2020

\(A=-2cosx+2cosx+tan^2x-\frac{1}{cos^2x}\)

\(=tan^2x-\left(1+tan^2x\right)=-1\)

16 tháng 3 2021

2sin(π2+x)+sin(3π−x)+sin(3π2+x)+cos(π2+x)2sin(π2+x)+sin(3π−x)+sin(3π2+x)+cos(π2+x)

=2cosx+sinx−cosx−sinx=2cosx+sinx−cosx−sinx

=cosx

NV
2 tháng 4 2019

\(A=2cosx-3cosx-sin\left(3\pi+\frac{\pi}{2}-x\right)+tan\left(\pi+\frac{\pi}{2}-x\right)\)

\(A=-cosx+sin\left(\frac{\pi}{2}-x\right)+tan\left(\frac{\pi}{2}-x\right)\)

\(A=-cosx+cosx+cotx=cotx\)

\(B=2cosx+sin\left(4\pi+\pi-x\right)+sin\left(2\pi-\frac{\pi}{2}+x\right)-sinx\)

\(B=2cosx+sin\left(\pi-x\right)+sin\left(-\frac{\pi}{2}+x\right)-sinx\)

\(B=2cosx+sinx-sin\left(\frac{\pi}{2}-x\right)-sinx\)

\(B=2cosx-cosx=cosx\)

NV
23 tháng 6 2020

\(A=cos\left(6\pi+\pi-x\right)+sin\left(2\pi+\frac{\pi}{2}-x\right)+tan^2\left(\pi+\frac{\pi}{2}-x\right)-\frac{1}{sin^2\left(7\pi+\pi+x\right)}\)

\(=cos\left(\pi-x\right)+sin\left(\frac{\pi}{2}-x\right)+tan^2\left(\frac{\pi}{2}-x\right)-\frac{1}{sin^2\left(\pi+x\right)}\)

\(=-cosx+cosx+cot^2x-\frac{1}{sin^2x}\)

\(=cot^2x-\left(1+cot^2x\right)=-1\)

NV
22 tháng 6 2020

\(2sin\left(\frac{\pi}{2}+x\right)+sin\left(3\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)

\(=2cosx+sinx-cosx-sinx\)

\(=cosx\)

5 tháng 7 2021

\(A=sin\left(\dfrac{\pi}{2}-\alpha+2\pi\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha-\pi-4\pi\right)\)

\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha-\pi\right)\)

\(=cos\alpha-cos\alpha+3sin\left(\pi-\alpha\right)\)\(=3sin\alpha\)

\(B=sin\left(x+\dfrac{\pi}{2}+42\pi\right)+cos\left(x+\pi+2016\pi\right)+sin^2\left(x+\pi+32\pi\right)+sin^2\left(x-\dfrac{\pi}{2}-2\pi\right)+cos\left(x-\dfrac{\pi}{2}+2\pi\right)\)

\(=sin\left(x+\dfrac{\pi}{2}\right)+cos\left(x+\pi\right)+sin^2\left(x+\pi\right)+sin^2\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\dfrac{\pi}{2}\right)\)

\(=cosx-cosx+sin^2x+cos^2x+sinx\)

\(=1+sinx\)

\(C=sin\left(x+\dfrac{\pi}{2}+1008\pi\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi+2018\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}+4\pi\right)\)

\(=sin\left(x+\dfrac{\pi}{2}\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}\right)\)

\(=cosx+2sin^2x-cosx+1-2sin^2x+cosx\)

\(=1+cosx\)

5 tháng 7 2021

bị bỏ gp chị nhắn tin vs mấy ad ấy, nhanh ko ấy mà chị =))

15 tháng 4 2021

\(A=\dfrac{\sqrt{2}.cosx-2cos\left(\dfrac{\pi}{4}+x\right)}{-\sqrt{2}.sinx+2sin\left(\dfrac{\pi}{4}+x\right)}\)

\(=\dfrac{\sqrt{2}.cosx-2\left(cos\dfrac{\pi}{4}.cosx-sin\dfrac{\pi}{4}.sinx\right)}{-\sqrt{2}.sinx+2\left(sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx\right)}\)

\(=\dfrac{\sqrt{2}.cosx-\sqrt{2}.cosx+\sqrt{2}.sinx}{-\sqrt{2}.sinx+\sqrt{2}.cosx+\sqrt{2}.sinx}\)

\(=\dfrac{\sqrt{2}.sinx}{\sqrt{2}.cosx}=tanx\)

6 tháng 5 2020

\(A=\cos x+3\cos\left(\pi-x\right)-2\cos x-5\cos\left(\pi-x\right)\)

\(A=\cos x-3\cos x-2\cos x+5\cos x=\cos x\)

Check lại giùm mình nha, sợ lại nhìn nhầm đề hay biến đổi nhầm :<

NV
23 tháng 4 2019

\(cosx+cos\left(x+\frac{\pi}{5}\right)+cos\left(x+\frac{9\pi}{5}\right)+cos\left(x+\frac{2\pi}{5}\right)+cos\left(x+\frac{8\pi}{5}\right)+...+cos\left(x+\frac{5\pi}{5}\right)\)

\(=cosx-2cosx.cos\frac{4\pi}{5}-2cosx.cos\frac{3\pi}{5}-2cosx.cos\frac{2\pi}{5}-2cosx.cos\frac{\pi}{5}-cosx\)

\(=-2cosx\left(cos\frac{\pi}{5}+cos\frac{4\pi}{5}+cos\frac{2\pi}{5}+cos\frac{3\pi}{5}\right)\)

\(=-2cosx\left(2cos\frac{\pi}{2}.cos\frac{3\pi}{10}+2cos\frac{\pi}{2}cos\frac{\pi}{10}\right)\)

\(=0\) (do \(cos\frac{\pi}{2}=0\))

26 tháng 7 2019

\(\frac{\sqrt{2}cosx-2cos\left(\frac{\pi}{4}+x\right)}{2sin\left(\frac{\pi}{4}+x\right)-\sqrt{2}sinx}\\ =\frac{cosx-\sqrt{2}cos\left(\frac{\pi}{4}+x\right)}{\sqrt{2}sin\left(\frac{\pi}{4}+x\right)-sinx}\\ =\frac{cosx-\sqrt{2}\left(\frac{\sqrt{2}}{2}cosx-\frac{\sqrt{2}}{2}sinx\right)}{\sqrt{2}\left(\frac{\sqrt{2}}{2}cosx+\frac{\sqrt{2}}{2}sinx\right)-sinx}\\ =\frac{cosx-cosx+sinx}{cosx+sinx-sinx}\\ =\frac{sinx}{cosx}=tanx\)