Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 1 + 3 + 3^2 + 3^3 + 3^4 + ...+ 3^49
=> 3P = 3 + 3^2 + 3^3 + 3^4 + 3^5 + ...+ 3^50
=> 3P-P = 3^50 - 1
2P = 3^50 - 1
\(P=\frac{3^{50}-1}{2}\)
2P=3+3+32+33+...+349+350
2P-P=350-1
=>P=350-1
Vậy biểu thức rút gọn nhất của P là 350-1
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
1. 2|x+(-2/5)|+3/7
ta có 2.|x+(-2/5)| 0 với x >_ 2/5
=> 2|x+(-2/5)|+3/7 >_ 3/7 với x >_ 2/5
vậy ta có giá trị nhỏ nhất của 2|x+(-2/5)|+3/7 bằng 3/7 <=> x=2/5
2. (2x+1/3)^2 - 5/6
ta có (2x+1/3)^2 >_ 0 với x >_ -1/6
=> (2x+1/3)^2 - 5/6 >_ -5/6 với x >_ -1/6
vậy ta có giá trị nhỏ nhất của (2x+1/3)^2-5/6 bằng -5/6 <=> x=-1/6
3. |2x-3|+|y-1/2|+3/4
ta có |2x-3|+|y-1/2| >_ 0 với x=3/2 và y=1/2
=> |2x-3|+|y-1/2|+3/4 >_3/4 với x=3/2 và y=1/2
vậy ta có giá trị nhỏ nhất của |2x-3|+|y-1/2|+3/4 bằng 3/4 với x=3/2 và y=1/2
chú ý mk kí hiệu "lớn hơn hoặc bằng" là ">_" nha
chúc bạn học tốt nha, kết bạn với mk nha
Toán học is my best:)) nâng cao chỗ nào bạn ?
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
P/s : Lê Đức Anh làm tắt thế !
\(T=\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right).......\left(\frac{1}{98}+1\right).\left(\frac{1}{99}+1\right)\)
\(T=\left(\frac{1}{2}+\frac{2}{2}\right).\left(\frac{1}{3}+\frac{3}{3}\right).\left(\frac{1}{4}+\frac{4}{4}\right).....\left(\frac{1}{98}+\frac{98}{98}\right).\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(T=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{99}{98}.\frac{100}{99}\)
\(T=\frac{3.4.5....99.100}{2.3.4.....98.99}\)
\(T=\frac{100}{2}\)
\(T=50\)
Vậy T = 50
Chúc bạn học tốt!
ahihi
\(A=1+3+3^2+3^3+...+3^{20}\)
=> \(3A=3+3^2+3^3+3^4+...+3^{21}\)
=> \(3A-A=3^{21}-1\)
=> \(2A=3^{21}-1\)
=> \(A=\frac{3^{21}-1}{2}\)