Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho − 3 bé hơn bằng x bé hơn bằng 3 rút gọn biểu thức T= \(\sqrt{x^2-6x+9}+\sqrt{x^2+6x+9}\) ta được
Ta có: \(T=\sqrt{x^2-6x+9}+\sqrt{x^2+6x+9}\)
\(=\left|x-3\right|+\left|x+3\right|\)
\(=3-x+x+3\)
\(=6\)
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)
\(TH1:x-3>=0\)
\(< =>x+3>=0\)
\(\left|x-3\right|-\left|x+3\right|=1\)
\(x-3-x-3=1\)
\(-6=1\)(loại)
\(TH2:x-3< =0\)
\(x+3>=0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x-x-3\)
\(-2x=1\)
\(x=-\frac{1}{2}\left(TM\right)\)
\(TH3:x-3< =0\)
\(x+3< =0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x+X+3=1\)
\(6=1\)(loại)
\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)
\(a,A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}.\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}.\)
\(A=\left(x-3\right)-\left(x+3\right)\)
\(b,\) Ta có : \(A=1=\left(x-3\right)-\left(x+3\right)\)
\(\Leftrightarrow1=x-3-x-3\Leftrightarrow1=-6\left(ko\right)tm\)
Vậy ko có giá trị của x.
a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x+3}}\)(\(x\ge0,x\ne9\))
b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\sqrt{x}-2\left(x\ge0,x\ne9\right)\)
a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x}+3}\)
b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)
c) \(6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-\left|3-x\right|\)
mà \(x< 3\Rightarrow3-x>0\Rightarrow6-2x-\left|3-x\right|=6-2x-3+x=3-x\)
\(E=\dfrac{\left|x-3\right|}{\left(x-3\right)\left(x+3\right)}\left(x+3\right)^2=\dfrac{\left|x-3\right|\left(x+3\right)}{x-3}\left(x\ne\pm3\right)\)
Với \(x>3\Leftrightarrow E=x+3\)
Với \(x< 3\Leftrightarrow E=-x-3\)
\(F=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\left(x\ge0;x\ne25\right)\\ F=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
\(B=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
\(B=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
\(B=\left|x-3\right|-\left|x+3\right|\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -3\\B=-x+3+x+3=6\end{matrix}\right.\\\left\{{}\begin{matrix}-3\le x< 3\\B=-x+3-x-3=-2x\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge3\\B=x-3-x-3=-6\end{matrix}\right.\end{matrix}\right.\)
b)
\(B=1\Leftrightarrow-3\le x< 3\Rightarrow B=-2x=1\Rightarrow x=-\dfrac{1}{2}̸\)
a/ \(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
\(=\left|x-3\right|-\left|x+3\right|=\left|x-3\right|-x-3\)
Nếu x\(\ge\)3\(\Rightarrow\left|x-3\right|=x-3\Rightarrow A=x-3-x-3=-6\)
Nếu x<3\(\Rightarrow\left|x-3\right|=3-x\Rightarrow A=3-x-x-3=-2x\)
b/ Có A=1\(\Rightarrow-2x=1\Leftrightarrow x=\frac{-1}{2}\)
a) \(A=|x-3|-|x+3|\)
*TH1 : Với x < -3, ta có: A = 3 - x + x + 3 = 6
*TH2 : Với -3 < x < 3, ta có: A = 3 - x - x -3 = -2x
*TH3 : Với x > 3, ta có: A = x - 3 - x - 3 = -6
b) Để A = 1, ta thấy TH1 và TH3 không t/m nên A = -2x =1
=> \(x=-\frac{1}{2}\) (t/m)
Vậy....
bạn chỉ mình cách ghi dấu căn ik mình làm cho
Bn ấn vào trả lời
Rồi ấn vào chữ M nằm ngang là xong @@
Nhớ đúng cho mk nha ^^