Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a, A=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}=\left(2-3-4\right)\sqrt{x-1}=-5\sqrt{x-1}\)
\(b, B=\frac{2}{x+y}.\left(x+y\right)\sqrt{\frac{3}{4}}=2\sqrt{\frac{3}{4}}=2.\frac{1}{2}.\sqrt{3}=\sqrt{3}\)
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a,\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\) (vi x>=8)
=\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b, \(\sqrt{x-1+2\sqrt{x\left(x-1\right)}+x}+\sqrt{x-1-2\sqrt{x\left(x-1\right)}+x}\)
=\(\sqrt{x-1}+\sqrt{x}+\left|\sqrt{x-1}-\sqrt{x}\right|\)
=\(\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\) =\(2\sqrt{x}\)
c,d sai dau bai hay sao y
\(E=\left(\frac{\sqrt{\sqrt{x}-1}}{\sqrt{\sqrt{x}+1}}+\frac{\sqrt{\sqrt{x}+1}}{\sqrt{\sqrt{x}-1}}\right):\sqrt{\frac{1}{x-1}}\) \(ĐKXĐ:x>1\)
\(E=\left(\frac{\left(\sqrt{\sqrt{x}-1}\right)^2}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}+\frac{\left(\sqrt{\sqrt{x}+1}\right)^2}{\left(\sqrt{\sqrt{x}-1}\right)\left(\sqrt{\sqrt{x}+1}\right)}\right)\cdot\sqrt{\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{1}}\)
\(E=\left(\frac{\sqrt{x}-1}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}+\frac{\sqrt{x}+1}{\left(\sqrt{\sqrt{x}-1}\right)\left(\sqrt{\sqrt{x}+1}\right)}\right)\cdot\sqrt{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(E=\frac{\sqrt{x}-1+\sqrt{x}+1}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}\cdot\sqrt{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(E=\frac{2\sqrt{x}}{\sqrt{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}}\cdot\sqrt{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=2\sqrt{x}\)
Ta có:\(x=19-8\sqrt{3}=16-2.4\sqrt{3}+3=\left(4-\sqrt{3}\right)^2\)
\(\Rightarrow2\sqrt{x}=2.\sqrt{\left(4-\sqrt{3}\right)^2}=2.\left(4-\sqrt{3}\right)=8-2\sqrt{3}\)
Câu 3 :
\(ĐKXĐ:x>0\)
\(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)
b) Để P = 3
\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)
\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)(tm)
Vậy để \(P=3\Leftrightarrow x=4\)
Câu 1 : Hình như sai đề !! Mik sửa :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)
b) Để A < 2
\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)
\(\Leftrightarrow-1< 2\sqrt{x}-4\)
\(\Leftrightarrow2\sqrt{x}>3\)
\(\Leftrightarrow\sqrt{x}>1,5\)
\(\Leftrightarrow x>2,25\)
Vậy để \(A< 2\Leftrightarrow x>2,25\)
\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)
\(C=-x\sqrt{x}+x+\sqrt{x}-1\)
\(D=x-\sqrt{x}+1\)
a, \(\sqrt{\left(\sqrt{2}\right)^2+2\times2\times\sqrt{2}+2^2}\)+ \(\sqrt{2^2+2\times2\times\sqrt{2}+\left(\sqrt{2}\right)^2}\)
= \(\sqrt{\left(\sqrt{2}+2\right)^2}\)+ \(\sqrt{\left(2-\sqrt{2}\right)^2}\)
= \(\sqrt{2}+2+2-\sqrt{2}\)
= 4