Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân số 5n+6/8n+7 rút gọn được cho a
=>a là ƯC(5n+6;8n+7)
Đặt ƯCLN(5n+6;8n+7)=d
=>5n+6 chia hết cho d và 8n+7 chia hết cho d
=>(5n+6)-(8n+7) chia hết cho d
=>(40n+48)-(40n+35) chia hết cho d
=>13 chia hết cho d
=>d ϵ Ư ( 13 ) ( Ư C L N )
=>a = 1 hoặc 13
phân số 5n+6/8n+7 rút gọn được cho a
=>a là ƯCLN﴾5n+6;8n+7﴿
Đặt ƯCLN﴾5n+6;8n+7﴿=d
=>5n+6 chia hết cho d và 8n+7 chia hết cho d
=>﴾5n+6﴿‐﴾8n+7﴿ chia hết cho d
=>﴾40n+48﴿‐﴾40n+35﴿ chia hết cho d
=>13 chia hết cho d
=>d là ƯCLN nên d=13
=>a \(\in\) {1;13}
Gọi d là ƯC ( 5n+6; 8n+7 )
⇒ 5n+6 ⋮ d ⇒ 40n+48 ⋮ d
⇒ 8n+7 ⋮ d ⇒ 40n+35 ⋮ d
⇒ [ ( 40n+48 ) - ( 40n+35 ) ] ⋮ d
⇒ 13 ⋮ d ⇒ d ∈ Ư ( 13 ) = { + 1 ; + 13 }
Có thể dút gọn \(^{\frac{5n+6}{8n+7}}\) cho 1; - 1; 13; - 13
gỌI ƯCLN(5N+6;8n+7)là d
13chia hết cho d nên d bằng 1; -1 ;13; -13
Vậy có thể rút gọn cho những số trên
Giả sử tồn tại số nguyên n sao cho \(\frac{4n+5}{5n+4}\)có thể rút gọn được :
=> 4n + 5 chia hết cho 5n + 4
=> 5( 4n + 5 ) chia hết cho 5n + 4
=> 20n + 25 chia hết cho 5n + 4 ( 1 )
Mặt khác, ta có :
5n + 4 chia hết cho 5n + 4 ( với mọi n thuộc Z, 5n + 4 khác 0 )
=> 4( 5n + 4 ) chia hết cho 5n + 4
=> 20n + 16 chia hết cho 5n + 4 ( 2 )
Từ ( 1 ) và ( 2 ) , ta có :
( 20n + 25 ) - ( 20n + 16 ) chia hết cho 5n + 4
=> 20n + 25 - 20n - 16 chia hết cho 5n + 4
=> ( 20n - 20n ) + ( 25 - 16 ) chia hết cho 5n + 4
=> 0 + 9 chia hết cho 5n + 4
=> 9 chia hết cho 5n + 4
=> 5n + 4 thuộc ước của 9 = { 1; 3; 9; -1; -3; -9 }
Ta có bảng :
5n + 4 1 3 9 -1 -3 -9
5n -3 -1 5 -5 -7 -13
n L L 1 -1 L L
\(\frac{4n+5}{5n+4}\) 1 -1
Vậy n thuộc { 1 ; -1 }