Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
ĐK: \(x>0;x\ne1\)
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left[\dfrac{\sqrt{x}.\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)
\(=\dfrac{x\sqrt{x}-x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}-x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\left(x>0;x\ne1;x\ne\dfrac{1}{4}\right)\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
Với x >= 0 ; x khác 1
\(A=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}-x-1\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}-2-x-1=\frac{\sqrt{x}+2}{\sqrt{x}+1}-x-3\)
\(=\frac{\sqrt{x}+2-\left(x+3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\frac{\sqrt{x}+2-x\sqrt{x}-x-3\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-x-x\sqrt{x}-2\sqrt{x}-1}{\sqrt{x}+1}\)