Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)^2\)
\(=6-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(=2\)
\(b,B=\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}\)
\(=\sqrt{\left(15-\sqrt{2}\right)^2+\left(11+\sqrt{2}\right)^2}\)
\(=26\)
hơi tắt
1.
Ta có: \(A=\sqrt{31-2\sqrt{30}}=\sqrt{\left(\sqrt{30}-1\right)^2}=\left|\sqrt{30}-1\right|=\sqrt{30}-1\)
\(B=\sqrt{11-2\sqrt{30}}=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}=\left|\sqrt{6}-\sqrt{5}\right|=\sqrt{6}-\sqrt{5}\)
\(C=\sqrt{13-2\sqrt{30}}=\sqrt{\left(\sqrt{10}-\sqrt{3}\right)^2}=\left|\sqrt{10}-\sqrt{3}\right|=\sqrt{10}-\sqrt{3}\)
\(D=\sqrt{39-6\sqrt{30}}=\sqrt{\left(\sqrt{30}-3\right)^2}=\left|\sqrt{30}-3\right|=\sqrt{30}-3\)
\(A=\sqrt{31-2\sqrt{30}}=\sqrt{30}-1\)
\(B=\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)
\(C=\sqrt{13-2\sqrt{30}}=\sqrt{10}-\sqrt{3}\)
\(D=\sqrt{39-6\sqrt{30}}=\sqrt{30}-3\)
a)
=\(\sqrt{15^2-2\cdot15\cdot\sqrt{2}+2}+\sqrt{11^2+2\cdot11\cdot\sqrt{2}+2}\)
=\(\sqrt{\left(15-\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)}^2\)
=\(15-\sqrt{2}+11+\sqrt{2}\)
=26
c)
=\(\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}\left(\sqrt{5}+2\right)\)
=\(\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}}\)
\(\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}=\sqrt{225-30\sqrt{2}+2}+\sqrt{121+22\sqrt{2}+2}=\sqrt{15^2-15.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{11^2+11.2\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(15-\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)^2}=15-\sqrt{2}+11+\sqrt{2}\left(do:15-\sqrt{2}>0;11+\sqrt{2}>0\right)=26\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
= \(\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)= \(\sqrt{13+30\sqrt{\left(1+\sqrt{2}\right)^2}}\)
= \(\sqrt{43\:+30\sqrt{2}}\) = \(\sqrt{(25+2×5×3\sqrt{2}+18}\) = \(5\:+3\sqrt{2}\)
\(\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}\)
=\(\sqrt{225+2.15.\sqrt{2}+2}+\sqrt{121+2.11\sqrt{2}+2}\)
=\(\sqrt{\left(15+\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)^2}\)
=\(15+\sqrt{2}+11+\sqrt{2}\)
=\(26+2\sqrt{2}\)
\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3\sqrt{20}+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}=1\)
\(b,=\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\) \(=\sqrt{3+30\sqrt{2+\sqrt{8+2\sqrt{8}+1}}}\)
\(=\sqrt{3+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)\(=\sqrt{3+30\sqrt{3+\sqrt{8}}}=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{3+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{3+30\sqrt{2}+30}=\sqrt{33+30\sqrt{2}}\)
a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
=1
b) Ta có: \(\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{3+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{33+30\sqrt{2}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)=\(\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)
=\(\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)=\(\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\sqrt{13+30\sqrt{2}+30}\)
=\(\sqrt{43+30\sqrt{2}}\)=\(\sqrt{\left(5+3\sqrt{2}\right)^2}\)=\(5+3\sqrt{2}\)
a) \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\\ =\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\\ =\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\\ =\sqrt{13+30\sqrt{2}+30}\\ =\sqrt{43+30\sqrt{2}}\\ =\sqrt{\left(3\sqrt{2}+5\right)^2}\\ =3\sqrt{2}+5\)
b) \(\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}\\ =\sqrt{225-2\cdot15\sqrt{2}+2}+\sqrt{121+2\cdot11\sqrt{2}+2}\\ =\sqrt{\left(15-\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)^2}\\ =15-\sqrt{2}+11+\sqrt{2}\\ =26\)