Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\frac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
mik chỉnh lại đề
\(D=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)
\(=\frac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}=\frac{2}{3}\)
Lời giải:
a) Đặt \(\sqrt{3+\sqrt{2}}=a; \sqrt{3-\sqrt{2}}=b\Rightarrow \left\{\begin{matrix}
a^2+b^2=6\\
a^2-b^2=2\sqrt{2}\\
ab=\sqrt{(3+\sqrt{2})(3-\sqrt{2})}=\sqrt{7}\end{matrix}\right.\)
\(A=\frac{a+b}{a-b}=\frac{(a+b)^2}{(a+b)(a-b)}=\frac{(a+b)^2}{a^2-b^2}=\frac{a^2+b^2+2ab}{a^2-b^2}\)
\(=\frac{6+2\sqrt{7}}{2\sqrt{2}}=\frac{3+\sqrt{7}}{\sqrt{2}}\)
b)
Đặt \(\sqrt{5+3\sqrt{2}}=a; \sqrt{5-3\sqrt{2}}=b\)
\(\Rightarrow \left\{\begin{matrix} a^2+b^2=10\\ a^2-b^2=6\sqrt{2}\\ ab=\sqrt{(5+3\sqrt{2})(5-3\sqrt{2})}=\sqrt{25-(3\sqrt{2})^2}=\sqrt{7}\end{matrix}\right.\)
\(B=\frac{\sqrt{9(5+3\sqrt{2})}+\sqrt{9(5-3\sqrt{2})}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}=\frac{3(a+b)}{a-b}\)
\(=\frac{3(a+b)^2}{a^2-b^2}=\frac{3(a^2+b^2+2ab)}{a^2-b^2}=\frac{3(10+2\sqrt{7})}{6\sqrt{2}}\)
\(=\frac{5+\sqrt{7}}{\sqrt{2}}\)
\(\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\left(\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}\right)\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}{\left(\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}\right)\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)}\)
\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{5+3\sqrt{2}-\left(5-3\sqrt{2}\right)}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{3+\sqrt{2}-\left(3-\sqrt{2}\right)}\)
\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{6\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)
\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)
\(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(=\frac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}\)
\(=\frac{10+2\sqrt{7}-6-2\sqrt{7}}{2\sqrt{2}}=\sqrt{2}\)
Ta có: \(A=\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(=\frac{3\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{\left(\sqrt{5+3\sqrt{2}}\right)^2-\left(\sqrt{5-3\sqrt{2}}\right)^2}-\frac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{\left(\sqrt{3+\sqrt{2}}\right)^2-\left(\sqrt{3-\sqrt{2}}\right)^2}\)
\(=\frac{3\left[\left(\sqrt{5+3\sqrt{2}}\right)^2+2\cdot\sqrt{5+3\sqrt{2}}\cdot\sqrt{5-3\sqrt{2}}+\left(\sqrt{5-3\sqrt{2}}\right)^2\right]}{\left|5+3\sqrt{2}\right|-\left|5-3\sqrt{2}\right|}-\frac{\left(\sqrt{3+\sqrt{2}}\right)^2+2\cdot\sqrt{3+\sqrt{2}}\cdot\sqrt{3-\sqrt{2}}+\left(\sqrt{3-\sqrt{2}}\right)^2}{\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|}\)
\(=\frac{3\left(\left|5+3\sqrt{2}\right|+2\sqrt{7}+\left|5-3\sqrt{2}\right|\right)}{5+3\sqrt{2}-\left(5-3\sqrt{2}\right)}-\frac{\left|3+\sqrt{2}\right|+2\cdot\sqrt{7}+\left|3-\sqrt{2}\right|}{3+\sqrt{2}-\left(3-\sqrt{2}\right)}\)
\(=\frac{3\left(5+3\sqrt{2}+2\sqrt{7}+5-3\sqrt{2}\right)}{5+3\sqrt{2}-5+3\sqrt{2}}-\frac{3+\sqrt{2}+2\sqrt{7}+3-\sqrt{2}}{3+\sqrt{2}-3+\sqrt{2}}\)
\(=\frac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\frac{6+2\sqrt{7}}{2\sqrt{2}}\)
\(=\frac{3\left(10+2\sqrt{7}\right)}{6\sqrt{2}}-\frac{3\left(6+2\sqrt{7}\right)}{6\sqrt{2}}\)
\(=\frac{30+6\sqrt{7}-18-6\sqrt{7}}{6\sqrt{2}}\)
\(=\frac{12}{6\sqrt{2}}=\sqrt{2}\)
Vậy: \(A=\sqrt{2}\)