K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

a)\(\eqalign{ & A\sin {x \over 5} = \sin {x \over 5}\cos {x \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr & = {1 \over 2}\sin {{2x} \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr & = {1 \over 4}\sin {{4x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} = {1 \over 8}\sin {{8x} \over 5}\cos {{8x} \over 5} \cr & = {1 \over {16}}\sin {{16x} \over 5} \cr} \)

Suy ra biểu thức rút gọn \(A =\sin{{16x} \over 5}:16\sin {x \over 5}\)

b)\(\eqalign{ & B = \sin {x \over 7} + 2\sin {{3x} \over 7} + \sin {{5x} \over 7} = 2\sin {{3x} \over 7} + (\sin {x \over 7} + \sin {{5x} \over 7}) \cr & = 2\sin {{3x} \over 7} + 2\sin {1 \over 2}({{5x} \over 7} + {x \over 7})cos{1 \over 2}({{5x} \over 7} - {x \over 7}) \cr & = 2\sin {{3x} \over 7}(1 + \cos {{2x} \over 7}) = 4\sin {{3x} \over 7}{\cos ^2}{x \over 7} \cr}\)

20 tháng 5 2021

a, \(\dfrac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)

\(=\dfrac{1+cos2x+cosx+cos3x}{2cos^2x+cosx-1}\)

\(=\dfrac{2cos^2x+2cos2x.cosx}{cos2x+cosx}\)

\(=\dfrac{2cosx\left(cos2x+cosx\right)}{cos2x+cosx}=2cosx\)

20 tháng 5 2021

b) \(cos\dfrac{5x}{2}.cos\dfrac{3x}{2}+sin\dfrac{7x}{2}.sin\dfrac{x}{2}\)

\(=cos\dfrac{4x+x}{2}.cos\dfrac{4x-x}{2}+sin\dfrac{4x+3x}{2}.sin\dfrac{4x-3x}{2}\)

\(=\dfrac{1}{2}\left(cos4x+cosx\right)-\dfrac{1}{2}\left(cos4x-cos3x\right)\)

\(=\dfrac{1}{2}\left(cosx+cos3x\right)=\dfrac{1}{2}.2cos2x.cos\left(-x\right)\)\(=cosx.cos2x\)

 

NV
26 tháng 2 2023

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
26 tháng 2 2023

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)

5 tháng 7 2021

\(A=sin\left(\dfrac{\pi}{2}-\alpha+2\pi\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha-\pi-4\pi\right)\)

\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha-\pi\right)\)

\(=cos\alpha-cos\alpha+3sin\left(\pi-\alpha\right)\)\(=3sin\alpha\)

\(B=sin\left(x+\dfrac{\pi}{2}+42\pi\right)+cos\left(x+\pi+2016\pi\right)+sin^2\left(x+\pi+32\pi\right)+sin^2\left(x-\dfrac{\pi}{2}-2\pi\right)+cos\left(x-\dfrac{\pi}{2}+2\pi\right)\)

\(=sin\left(x+\dfrac{\pi}{2}\right)+cos\left(x+\pi\right)+sin^2\left(x+\pi\right)+sin^2\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\dfrac{\pi}{2}\right)\)

\(=cosx-cosx+sin^2x+cos^2x+sinx\)

\(=1+sinx\)

\(C=sin\left(x+\dfrac{\pi}{2}+1008\pi\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi+2018\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}+4\pi\right)\)

\(=sin\left(x+\dfrac{\pi}{2}\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}\right)\)

\(=cosx+2sin^2x-cosx+1-2sin^2x+cosx\)

\(=1+cosx\)

5 tháng 7 2021

bị bỏ gp chị nhắn tin vs mấy ad ấy, nhanh ko ấy mà chị =))

NV
19 tháng 4 2021

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

19 tháng 4 2021

Mình sửa lại đề rồi á

NA
Ngoc Anh Thai
Giáo viên
10 tháng 4 2021

\(A=\dfrac{sin^2x-cos^2x.\left(1-cos^2x\right)}{cos^2x-sin^2x.\left(1-sin^2x\right)}=\dfrac{sin^2x-cos^2x.sin^2x}{cos^2x-sin^2x.cos^2x}\\ =\dfrac{sin^2x.\left(1-cos^2x\right)}{cos^2x.\left(1-sin^2x\right)}=\dfrac{sin^2x.sin^2x}{cos^2x.cos^2x}=\dfrac{sin^4x}{cos^4x}.\)

NV
13 tháng 4 2021

1.

\(2cos\left(a+b\right)=cosa.cos\left(\pi+b\right)\)

\(\Leftrightarrow2cosa.cosb-2sina.sinb=-cosa.cosb\)

\(\Leftrightarrow2sina.sinb=3cosa.cosb\Rightarrow4sin^2a.sin^2b=9cos^2a.cos^2b\)

\(\Rightarrow4\left(1-cos^2a\right)\left(1-cos^2b\right)=9cos^2a.cos^2b\)

\(\Leftrightarrow4-4\left(cos^2a+cos^2b\right)=5cos^2a.cos^2b\)

\(A=\dfrac{1}{cos^2a+2\left(sin^2a+cos^2a\right)}+\dfrac{1}{cos^2b+2\left(sin^2b+cos^2b\right)}\)

\(=\dfrac{1}{2+cos^2a}+\dfrac{1}{2+cos^2b}=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+cos^2a.cos^2b}\)

\(=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+\dfrac{4}{5}-\dfrac{4}{5}\left(cos^2a+cos^2b\right)}=\dfrac{4+cos^2a+cos^2b}{\dfrac{24}{5}+\dfrac{6}{5}\left(cos^2a+cos^2b\right)}=\dfrac{5}{6}\)

NV
13 tháng 4 2021

2.

\(A=2cos\dfrac{2x}{3}\left(cos\dfrac{2\pi}{3}+cos\dfrac{4x}{3}\right)=2cos\dfrac{2x}{3}\left(cos\dfrac{4x}{3}-\dfrac{1}{2}\right)\)

\(=2cos\dfrac{2x}{3}.cos\dfrac{4x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x+cos\dfrac{2x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x\)

\(B=\dfrac{cos2b-cos2a}{cos^2a.sin^2b}-tan^2a.cot^2b=\dfrac{1-2sin^2b-\left(1-2sin^2a\right)}{cos^2a.sin^2b}-tan^2a.cot^2b\)

\(=\dfrac{2sin^2a-2sin^2b}{cos^2a.sin^2b}-tan^2a.cot^2b=2tan^2a\left(1+cot^2b\right)-2\left(1+tan^2a\right)-tan^2a.cot^2b\)

\(=2tan^2a+2tan^2a.cot^2b-2-2tan^2a-tan^2a.cot^2b\)

\(=tan^2a.cot^2b-2\)