Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5^2+5^3+...+5^{2015}+5^{2016}\)
\(5A=5+5^3+5^4+...+5^{2016}+5^{2017}\)
\(4A=\left(5+5^3+5^4+...+5^{2016}+5^{2017}\right)-\left(1+5^2+5^3+...+5^{2015}+5^{2016}\right)\)
\(=5+5^{2017}-\left(1+5^2\right)\)
\(=4+5^{2017}-5^2\)
\(A=\frac{4+5^{2017}-5^2}{4}\)
Ta có : 5A = 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017
=> 5A - A = ( 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017 ) - ( 1 + 5^2 + 5^3 + ... + 5^2015 + 5^2016 )
=> 4A = 4 + 5^2 + 5^2017
=> A = ( 4 + 5^2 + 5^2017 )/4
a) x+45-[90+(-20)+5-(-45)]
=x+45-120
=x+-75
b) x+(294+13)+(94-13)
=x+307+81
=x+388
a) x+45-[90+(-20)+5-(-45)]
=x+45-[(90-20)+(5+45)]
=x+45-[70+50]
=x+45-120
=x+(45-120)
=x-75
b) x+(294+13)+(94-13)
=x+307+81
=x+(307+81)
=x+388
\(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}=\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}=\frac{8}{25-3}=\frac{8}{22}=\frac{4}{11}\)
\(\frac{3^4.5-3^6}{3^4.13+3^4}=\frac{3^4.\left(5-3^2\right)}{3^4.\left(13+1\right)}=\frac{5-9}{14}=\frac{-4}{14}=\frac{-2}{7}\)
\(\frac{-2}{7}=\frac{-22}{77}\)
\(\frac{4}{11}=\frac{28}{77}\)
1: \(\dfrac{-7}{4}\cdot\dfrac{2}{9}=\dfrac{-14}{36}=\dfrac{-7}{18}\)
2: \(=\dfrac{12}{13}\cdot\dfrac{26}{5}=\dfrac{24}{5}\)
3: \(=\dfrac{20}{11}\cdot\dfrac{55}{21}=\dfrac{100}{21}\)
4: \(=\dfrac{-40}{240}=\dfrac{-1}{6}\)
a) x + 45 -[ 90 + (-20) + 5 - (-45)] +3x
= x +45 -( 90 - 20 + 5 + 45) + 3x
= x +45 -120 +3x
= -75 +4x
b) x +(-294 +13 -2x) +(94 -13) +9x
= x -281 -2x +81 +9x
= -200 +8x
2 chân đi trước, 3 chân đi sau
Bg
Ta có: P = 5 + 52 + 53 +...+559 + 560
=> 5P = 5.(5 + 52 + 53 +...+559 + 560)
=> 5P = 52 + 53 + 54 +...+560 + 561
=> 5P - P = 52 + 53 + 54 +...+560 + 561 - (5 + 52 + 53 +...+559 + 560)
=> 4P = 561 - 5
=> P = \(\frac{5^{61}-5}{4}\)
Vậy P = \(\frac{5^{61}-5}{4}\)
P = 5 + 52 + 53 + ... + 559 + 560
=> 5P = 5( 5 + 52 + 53 + ... + 559 + 560 )
= 52 + 53 + ... + 560 + 561
=> 4P = 5P - P
= 52 + 53 + ... + 560 + 561 - ( 5 + 52 + 53 + ... + 559 + 560 )
= 52 + 53 + ... + 560 + 561 - 5 - 52 - 53 - ... - 559 - 560
= 561 - 5
4P = 561 - 5 => P = \(\frac{5^{61}-5}{4}\)
A = 5 + 5 ^ 2 + 5 ^ 3 + ... + 5 ^ 50
5 A = 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 51
5 A - A = ( 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 51 )
- ( 5 + 5 ^ 2 + 5 ^ 3 + ... + 5 ^ 50 )
4 A = 5 ^ 51 - 5
A = \(\frac{5^{51}-5}{4}\)
A=5^1+5^21+5^3+...+5^50
5^1A=5(5^1+5^2+5^3+..+5^50)
5A=5^2+5^3+..+5^50+5^51
5A-A=(5^2+5^3+..+5^50+5^51)-(5^1+5^2+5^3+..+5^50)
4A=5^51-5^1
A=(5^51-5^1):4