Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.1!+2.2!+3.3!+...+15.15!+16.16!=(2-1).1!+(3-1).2!+(4-1).3!+...+(16-1).15!+(17-1).16!
=2!-1!+3!-2!+4!-3!+...+16!-15!+17!-16!=17!-1
Ta thấy 1.1! + 1! = 2.1! = 2!
2.2! + 2! = 3.2! = 3!
....
Vì vậy ta có: S + 1! + 2! + 3! + ... + 100! = (1.1! + 1!) + (2.2!+2!) + ... + (100.100! + 100!) = 2! + 3! + 4! + ... + 100! + 101!
\(\Rightarrow S+1!=101!\Rightarrow S=101!-1.\)
Ta có công thức thu gọn : \(n.n!=n!.\left(n+1-1\right)=\left(n+1\right)!-n!\)
Áp dụng với n = 1,2,...,100 sẽ được kết quả giống như cô Huyền.
Ta có quy luật như sau:
S1=1.1+1^2=1
S2=2.2-1.1=2^2-1^2+4-1=3
S3=3.3-(2.2-1.1)=3^2-(2^2-1^2)=9-(4-1)=9-3=6
S4=4.4.[3.3.(2.2-1.1)]=4^2.[3^2.(2^2-1^1)]=16.[9.(4-1)]=16.(9.3)=16.27=432
S5=?
Đây là một câu hỏi dành cho những bạn chuyên toán bài trên các bạn đã được gợi ý một phần ba gợi ý rồi đấy.
S5 vẫn sẽ là một câu hỏi cho các bạn, các bạn chỉ cần tìm ra quy luật của các tổng là nhận ra ngay.
Nếu các bạn nhận ra thì chúc mừng.
sao mình ko thấy 2 bạn ơi, hay 2 bạn chép lại cho mình dc ko?
mình nhờ đấy