Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(x\left(x-2\right)-\left(x+3\right).x+7+9x=6\)
\(\Leftrightarrow x^2-2x-\left(x^2+3x\right)+7+9x=6\)
\(\Leftrightarrow x^2-2x-x^2-3x+7+9x=6\)
\(\Leftrightarrow4x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
Vậy ...
b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
\(\Leftrightarrow21x-35-15x^2+25x-\left(10x+2-15x^2+6x\right)=4\)
\(\Leftrightarrow21x-35-15x^2+25x-10x-2+15x^2-6x=4\)
\(\Leftrightarrow30x-37=4\)
\(\Leftrightarrow30x=41\)
\(\Leftrightarrow x=\dfrac{41}{30}\)
Vậy ...
c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14x\) (Sửa đề)
\(\Leftrightarrow x^3+8-x^3-3=14x\)
\(\Leftrightarrow5=14x\)
\(\Leftrightarrow x=\dfrac{5}{14}\)
Vậy ...
d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)
\(\Leftrightarrow x^3+1-x^3-3x=2\)
\(\Leftrightarrow1-3x=2\)
\(\Leftrightarrow-3x=1\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Vậy ...
a) \(x\left(x-2\right)-\left(x+3\right)x+7+9x=6\)
=> \(x^2-2x-x-3x+7+9x=6\)
=> \(x^2-2x-x^2-3x+7+9x=6\)
=> \(\left(x^2-x^2\right)+\left(-2x-3x+9x\right)=6-7\)
=> \(4x=-1\)
Vậy \(x=\dfrac{-1}{4}\)
b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
=>\(21x-15x^2-35+25x-10x+15x^2-4+6x=4\)
=> \(\left(21x+25x-10x+6x\right)\)\(+\left(-15x^2+15x^2\right)\)\(=4+35+4\)
=> \(42x=43\)
Vậy \(x=\dfrac{43}{42}\)
c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14\)
=> \(x^3-2x^2+4x+2x^2-4x+8-x^3-3\)\(=14x\)
=>\(\left(x^3-x^3\right)+\left(-2x^2+2x^x\right)+\left(4x-4x\right)+\left(8-3\right)\)\(=14x\)
=> \(5=14x\)
Vậy \(x=\dfrac{5}{14}\)
d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)
=> \(x^3+x^2+x+x^2-x+1-x^3-3x=2\)
=>\(\left(x^3-x^3\right)+\left(-x^2+x^2\right)+\left(x-x-3x\right)=2-1\)
=> \(-3x=1\)
Vậy \(x=\dfrac{-1}{3}\)
\(5x\left(x-3\right)=x-3\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)
a) \(A=\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(3x-4\right)+5x\)
\(=\left(2x^2+6x-x-3\right)-\left(3x^2-4x-6x+8\right)+5x\)
\(=\left(2x^2+5x-3\right)-\left(3x^2-10x+8\right)+5x\)
\(=2x^2+5x-3-3x^2+10x-8+5x\)
\(=x^2+20x-11\)
b) \(5x\left(2x^2-3x+1\right)-2x\left(x+1\right)\left(x-2\right)\)
\(=10x^3-15x^2+5x-2x\left(x^2-2x+x-2\right)\)
\(=10x^3-15x^2+5x-2x^3+4x^2-2x^2+4x\)
\(=8x^3-13x^2+9x\)
c) \(\left(3x+2\right)\left(x+1\right)-2x\left(x+3\right)-2x+1\)
\(=3x^2+3x+2x+2-2x^2-6x-2x+1\)
\(=x^2-3x+3\)
a)\(2x\left(x-2016\right)-2x+4032=0\)
\(\Leftrightarrow2x\left(x-2016\right)-2\left(x-2016\right)=0\)
\(\Leftrightarrow\left(2x-2\right)\left(x-2016\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x-2016\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2016=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2016\end{array}\right.\)
b)\(5x\left(x-3\right)=x-3\)
\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x-1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)
c)\(\left(3x-1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x-1\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-1+x+2\right)\left[\left(3x-1\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(4x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x+1=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=\frac{3}{2}\end{array}\right.\)
a) x(x - 5) - 4x + 20 = 0
\(\Leftrightarrow\) x(x - 5) - (4x + 20)
\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x - 4)
Khi x - 5 = 0 hoặc x - 4 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 4
Vậy S = \(\left\{5;4\right\}\)
b) x(x + 6) - 7x - 42 = 0
\(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0
\(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0
\(\Leftrightarrow\) (x + 6)(x - 7) = 0
Khi x - 6 = 0 hoặc x - 7 = 0
\(\Leftrightarrow\) x = 6 \(\Leftrightarrow\) x = 7
Vậy S = \(\left\{6;7\right\}\)
c) x3 - 5x2 - x + 5 = 0
\(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0
\(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x2 - 1) = 0
\(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0
Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 1 \(\Leftrightarrow\) x = -1
Vậy S = \(\left\{5;1;-1\right\}\)
d) 4x2 - 25 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0
\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0
Khi 2x - 5 = 0 hoặc -x + 12 = 0
\(\Leftrightarrow\) 2x = 5 \(\Leftrightarrow\) -x = -12
\(\Leftrightarrow\) x = \(\dfrac{5}{2}\) \(\Leftrightarrow\) x = 12
Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)
e) x3 + 27 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0
\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0
\(\Leftrightarrow\) (x - 3)x(x - 2)
Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x = 3 \(\Leftrightarrow\) x = 2
Vậy S = \(\left\{3;0;2\right\}\)
Chúc bạn học tốt
a) Ta có: \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
b) Ta có: \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
a, \(2x\left(x-3\right)-15+5x=0\\ \Rightarrow2x\left(x-3\right)-\left(15-5x\right)=0\\ \Rightarrow2x\left(x-3\right)-5\left(3-x\right)=0\\ \Rightarrow\left(2x+5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)
b, \(x^3-7x=0\\ \Rightarrow x\left(x^2-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm7\end{matrix}\right.\)
c, \(\left(2x-3\right)^2-\left(x+5\right)^2=0\\ \Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\\ \Rightarrow\left(x-8\right)\left(3x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Xem lại đề câu d
a, \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)
\(=-15x^2+10x+12x-8=-15x^2+22x-8\)
Thay x = -2 vào biểu thức ta có : \(-15\left(-2\right)^2+22\left(-2\right)-8\)
\(=-15.4-44-8=-112\)
b, \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)
\(=2x^2+3x-18x-27=2x^2-15x-27\)
Thay x = -1/2 vào biểu thức ta có : \(2\left(-\frac{1}{2}\right)^2-15\left(-\frac{1}{2}\right)-27\)
\(=2.\frac{1}{4}+\frac{15}{2}-27=\frac{11}{2}+\frac{15}{2}+27=40\)
Bài làm:
a) \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)
\(A=-15x^2+22x-8-2x^2+7x-6\)
\(A=-17x^2+29x-14\)
Thay x = -2 vào ta được:
\(A=-17.\left(-2\right)^2+29.\left(-2\right)-14\)
\(A=-68-58-14\)
\(A=-140\)
b) \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)
\(B=2x^2-15x-27-2\left(x^2+2x-35\right)\)
\(B=2x^2-15x-27-2x^2-4x+70\)
\(B=-19x+43\)
Thay x = -1/2 vào B ta được:
\(B=-19.\left(-\frac{1}{2}\right)+43=\frac{19}{2}+43=\frac{105}{2}\)
1. (-2x - 1)(x2 - x - 3) - (x + 2)(x + 1)2
= -2x3 + 2x2 + 6x - x2 + x + 3 - (x + 2)(x2 + 2x + 1)
= -2x3 + x2 + 7x + 3 - x3 - 2x2 - x - 2x2 - 2x - 2
= -3x3 - 3x2 + 4x + 1
2. (x + 2)(x - 1) - (x - 3)(x + 2) = 3
=> (x + 2)(x - 1 - x + 3) = 3
=> (x + 2).0 = 3
...(xem lại đề)
\(\left(x+2\right)\left(x-1\right)-\left(x-3\right)\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-1-x+3\right)=3\)
\(\Leftrightarrow2\left(x+2\right)=3\)
\(\Leftrightarrow x+2=\frac{3}{2}\)
\(\Leftrightarrow x=\frac{3}{2}-2\)
\(\Leftrightarrow x=-\frac{1}{2}\)