Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) H(x) = 4x3 - 16x
Để H(x) có nghiệm => 4x3 - 16x = 0
=> 4x3 = 16x
=> 4x2 = 16
=> x2 = 4
=> \(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy nghiệm của đa thức H(x) = 4x3 - 16x là 2 và -2
b) G(x) = \(\left(x+\frac{1}{2}\right)\cdot\left(3-\frac{1}{2}x\right)\)
Để G(x) có nghiệm => \(\left(x+\frac{1}{2}\right)\cdot\left(3-\frac{1}{2}x\right)=0\)
=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\3-\frac{1}{2}x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{1}{2}x=3\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{2}\\x=6\end{cases}}\)
Vậy nghiệm của đa thức G(x) = \(\left(x+\frac{1}{2}\right)\cdot\left(3-\frac{1}{2}x\right)\)là -1/2 và 6
c) P(x) = 2x2 - 8
Để P(x) có nghiệm => 2x2 - 8 = 0
=> 2x2 = 8
=> x2 = 4
=> \(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy nghiệm của đa thức P(x) = 2x2 - 8 là 2 và -2
\(Q\left(x\right)=x^2+4x\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy nghiệm của đa thức .....
\(Q(x)=0\) \(\Leftrightarrow x^2+4x\) \(\Leftrightarrow(x+\text{4)x=0}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
a)
P(x)=(4x3-2x2-7x+2017)+(-4x3+x2+17x-2017)
=4x3+(-2x2)+(-7x)+2017+(-4x3)+x2+17x+(-2017)
=-x2+10x
Q(x)=(4x3-2x2-7x+2017)-(-4x3+x2+17x-2017)
=4x3+(-2x2)+(-7x)+2017+4x3=(-x2)+(-17x)+2017
=8x3-3x2-24x+4034
b)P(x)=-x2+10x
Ta có:-x2+10x=0
-1x2+10x=0
x(-1x+10)=0
TH1:x=0
TH2:-1x+10=0
=>x=10
Vậy x=0 và 10 là nghiệm đa thức P(x)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
Ta có :Q(x)=0
\(\Rightarrow4x^2+16x=0\)
\(\Rightarrow4x\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
Vậy 0 và -4 là 2 nghiệm của Q(x)
\(4x^2+16x=0\)
\(\Leftrightarrow4x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
Vây...