K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\frac{5}{2x+6}\)\(\frac{7}{12x^3y^4}\)

Ta có: \(2x+6=2\left(x+3\right)\)

\(12x^3y^4=12x^3y^4\)

\(MSC=12x^3y^4\left(x+3\right)\)

Ta có: \(\frac{5}{2x+6}=\frac{5}{2\left(x+3\right)}=\frac{5\cdot6\cdot x^3y^4}{2\cdot6\cdot x^3y^4\cdot\left(x+3\right)}=\frac{30x^3y^4}{12x^3y^4\left(x+3\right)}\)

\(\frac{7}{12x^3y^4}=\frac{7\cdot\left(x+3\right)}{12x^3y^4\cdot\left(x+3\right)}=\frac{7x+21}{12x^3y\left(x+3\right)}\)

b)\(\frac{4}{15x^3y^5}\)\(\frac{11}{12x^4y^2}\)

MSC=\(60x^4y^5\)

Ta có: \(\frac{4}{15x^3y^5}=\frac{4\cdot4\cdot x}{15x^3y^5\cdot4\cdot x}=\frac{16x}{60x^4y^5}\)

\(\frac{11}{12x^4y^2}=\frac{11\cdot5\cdot y^3}{12x^4y^2\cdot5\cdot y^3}=\frac{55y^3}{60x^4y^5}\)

c) \(\frac{5}{2x+6}\)\(\frac{3}{x^2-9}\)

Ta có: \(2x+6=2\left(x+3\right)\)

\(x^2-9=\left(x-3\right)\left(x+3\right)\)

MSC=2(x+3)(x-3)

Ta có: \(\frac{5}{2x+6}=\frac{5}{2\left(x+3\right)}=\frac{5\cdot\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}=\frac{5x-15}{2\left(x+3\right)\left(x-3\right)}\)

\(\frac{3}{x^2-9}=\frac{3}{\left(x-3\right)\left(x+3\right)}=\frac{3\cdot2}{2\cdot\left(x-3\right)\cdot\left(x+3\right)}=\frac{6}{2\left(x-3\right)\left(x+3\right)}\)

d) \(\frac{2x}{x^2-8x+16}\)\(\frac{x}{3x^2-12x}\)

Ta có: \(x^2-8x+16=\left(x-4\right)^2\)

\(3x^2-12x=3x\left(x-4\right)\)

MSC=\(3x\left(x-4\right)^2\)

Ta có: \(\frac{2x}{x^2-8x+16}=\frac{2x}{\left(x-4\right)^2}=\frac{2x\cdot3x}{3x\cdot\left(x-4\right)^2}=\frac{6x^2}{3x\left(x-4\right)^2}\)

\(\frac{x}{3x^2-12x}=\frac{x}{3x\left(x-4\right)}=\frac{x\left(x-4\right)}{3x\left(x-4\right)^2}=\frac{x^2-4x}{3x\left(x-4\right)^2}\)

e) \(\frac{4x^2-3x+5}{x^3-1}\); \(\frac{1-2x}{x^2+x+1}\) và -2

Ta có: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

MSC=\(\left(x-1\right)\left(x^2+x+1\right)\)

Ta có: \(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-2x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{1-2x}{x^2+x+1}=\frac{\left(1-2x\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{3x-2x^2-1}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(-2=\frac{-2\left(x^2+x+1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{-2\left(x^3-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{-2x^3+2}{\left(x^2+x+1\right)\left(x-1\right)}\)

f) \(\frac{10}{x+2}\)\(\frac{5}{2x-4}\)\(\frac{1}{6-3x}\)

Ta có: \(x+2=x+2\)

\(2x-4=2\left(x-2\right)\)

\(6-3x=3\left(2-x\right)=-3\left(x-2\right)\)

MSC=-6(x-2)(x+2)

Ta có: \(\frac{10}{x+2}=\frac{10\cdot\left(-6\right)\cdot\left(x-2\right)}{\left(x+2\right)\cdot\left(-6\right)\cdot\left(x-2\right)}=\frac{-60\left(x-2\right)}{-6\left(x-2\right)\left(x+2\right)}=\frac{120-60x}{-6\left(x-2\right)\left(x+2\right)}\)

\(\frac{5}{2x-4}=\frac{5}{2\left(x-2\right)}=\frac{5\cdot\left(-3\right)\cdot\left(x+2\right)}{2\cdot\left(x-2\right)\cdot\left(-3\right)\cdot\left(x+2\right)}=\frac{-15\left(x+2\right)}{-6\left(x-2\right)\left(x+2\right)}=\frac{-15x-30}{-6\left(x-2\right)\left(x+2\right)}\)

\(\frac{1}{6-3x}=\frac{1}{3\left(2-x\right)}=\frac{-1}{3\left(x-2\right)}=\frac{-1\cdot\left(-2\right)\cdot\left(x+2\right)}{3\cdot\left(-2\right)\cdot\left(x-2\right)\cdot\left(x+2\right)}=\frac{2x+4}{-6\left(x-2\right)\left(x+2\right)}\)

11 tháng 3 2020

\(\left(a\right)\frac{30x^3y^4}{12x^3y^4\left(x+3\right)}--\frac{7x+21}{12x^3y^4\left(x+3\right)}\)

\(\left(b\right)\frac{16x}{60x^4y^5}--\frac{55y^3}{60x^4y^5}\)

\(\left(c\right)\frac{5x-15}{2\left(x+3\right)\left(x-3\right)}--\frac{6}{2\left(x+3\right)\left(x-3\right)}\)

\(\left(d\right)\frac{6x}{3\left(x-4\right)^2}--\frac{x^2-4x}{3\left(x-4\right)^2}\)

\(\left(f\right)\frac{60}{6\left(x+2\right)}--\frac{-15}{6\left(x+2\right)}--\frac{-2}{6\left(x+2\right)}\)

\(\left(e\right)\frac{4x^2-3x+5}{x^3-1}--\frac{3x-2x^2-1}{x^3-1}--\frac{2-2x^3}{x^3-1}\)

26 tháng 11 2021

Quy đồng mẫu thức các phân thức sau :

a) 2514x2y;1421xy5

14 tháng 7 2019

Mình ko ghi lại đề , bạn ghi ra xong rồi suy ra như mình nha .

1) \(=>A=\left(6x^2+3x-10x-5\right)-\left(6x^2+14x-9x-21\right)\)

\(=>A=-12x+16\)

2) \(=>B=8x^3+27-8x^3+2=29\)

3)\(=>C=[\left(x-1\right)-\left(x+1\right)]^3=\left(-2\right)^3=-8\)

4)\(=>D=[\left(2x+5\right)-\left(2x\right)]^3=5^3=125\)

5)\(=>E=\left(3x+1\right)^2-\left(3x+5\right)^2+12x+2\left(6x+3\right)\)

\(=>E=\left(3x+1+3x+5\right)\left(3x+1-3x-5\right)+12x+12x+6\)

\(=>E=\left(6x+6\right)\left(-4\right)+24x+6=-24x-24+24x+6=-18\)

6)\(=>F=\left(2x^2+3x-10x-15\right)-\left(2x^2-6x\right)+x+7=-8\)

k cho mik nha , 

Bài 2:

a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)

\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)

25 tháng 11 2015

\(a.\) Ta có: 

 \(MTC:\)  \(\left(x+1\right)\left(x+2\right)\)

 Do đó

\(\frac{3x}{x+1}=\frac{3x\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}\)

\(\frac{x+4}{x+2}=\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+2\right)}\)

\(b.\)  Ta có: 

\(x^2+x=x\left(x+1\right)\)

\(x^2-1=\left(x-1\right)\left(x+1\right)\)

nên  \(MTC:\)  \(x\left(x-1\right)\left(x+1\right)\)

Do đó:

\(\frac{5}{x^2+x}=\frac{5}{x\left(x+1\right)}=\frac{5\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\frac{6}{x^2-1}=\frac{6}{\left(x-1\right)\left(x+1\right)}=\frac{6x}{x\left(x-1\right)\left(x+1\right)}\)

\(c.\)  Ta có:

\(x^2-5x+4=x^2-x-4x+4=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)

\(2x^2-8x=2x\left(x-4\right)\)

nên  \(MTC:\)  \(2x\left(x-1\right)\left(x-4\right)\)

Do đó: 

\(\frac{4}{x^2-5x+4}=\frac{4}{\left(x-1\right)\left(x-4\right)}=\frac{8x}{2x\left(x-1\right)\left(x-4\right)}\)

\(\frac{x+1}{2x^2-8x}=\frac{x+1}{2x\left(x-4\right)}=\frac{\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)\left(x-4\right)}\)

 

27 tháng 11 2020

Làm nốt d :P

\(\frac{x+3}{2x^2-15x-8};\frac{3}{x^2-8x}\)

Ta có : \(2x^2-15x-8=\left(2x+1\right)\left(x-8\right)\)

\(x^2-8x=x\left(x-8\right)\)

MTC : \(x\left(x-8\right)\left(2x+1\right)\)

\(\frac{x+3}{2x^2-15x-8}=\frac{x+3}{\left(2x+1\right)\left(x-8\right)}=\frac{x^2+3x}{x\left(x-8\right)\left(2x+1\right)}\)

\(\frac{3}{x^2-8x}=\frac{3}{x\left(x-8\right)}=\frac{6x+3}{x\left(x-8\right)\left(2x+1\right)}\)