Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc MNO+góc MPO=180 độ
=>MNOP nội tiếp
Xét (O) có
MN,MP là tiếp tuyến
=>MN=MP
mà ON=OP
nên OM là trung trực của NP
=>OM vuông góc HP
b: ΔOMN vuông tại N có NH vuông góc OM
=>MH*MO=MN^2
Xét ΔMAN và ΔMNB có
góc MNA=góc MBN
góc M chung
=>ΔMAN đồng dạng với ΔMNB
=>MN^2=MA*MB=MH*MO
=>MA/MH=MO/MB
=>ΔMAH đồng dạng với ΔMOB
=>góc MHA=góc MBO
=>góc MHA=góc BHO
=>góc AHN=góc BHN
=>HN là phân giác của góc AHB
a, HS tự chứng minh
b, MH.MO = MA.MB ( = M C 2 )
=> ∆MAH:∆MOB (c.g.c)
=> M H A ^ = M B O ^
M B O ^ + A H O ^ = M H A ^ + A H O ^ = 180 0
=> AHOB nội tiếp
c, M K 2 = ME.MF = M C 2 Þ MK = MC
∆MKS = ∆MCS (ch-cgv) => SK = SC
=> MS là đường trung trực của KC
=> MS ^ KC tại trung của CK
d, Gọi MS ∩ KC = I
MI.MS = ME.MF = M C 2 => EISF nội tiếp đường tròn tâm P Þ PI = PS. (1)
MI.MS = MA.MB (= M C 2 ) => AISB nội tiếp đường tròn tâm Q Þ QI = QS. (2)
Mà IT = TS = TK (do DIKS vuông tại I). (3)
Từ (1), (2) và (3) => P, T, Q thuộc đường trung trực của IS => P, T, Q thẳng hàng