K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

Q=\(\dfrac{1}{2}+\left(\dfrac{3}{4}+\dfrac{7}{8}\right)+\left(\dfrac{15}{16}+\dfrac{31}{32}\right)+\left(\dfrac{63}{64}+\dfrac{127}{128}\right)-6\)

Q=\(\dfrac{1}{2}+\dfrac{13}{8}+\dfrac{61}{32}+\dfrac{253}{128}\)\(-6\)

Q= \(\dfrac{64}{128}+\dfrac{208}{128}+\dfrac{244}{128}+\dfrac{253}{128}-6\)

Q= \(\dfrac{769}{128}-6\)

Q=\(\dfrac{769}{128}-\dfrac{768}{128}\)

Q= \(\dfrac{1}{128}\)

26 tháng 11 2022

a: \(=\dfrac{-3}{4}\left(31+\dfrac{11}{23}+8+\dfrac{12}{23}\right)=\dfrac{-3}{4}\cdot40=-30\)

b: \(=\left(\dfrac{7}{3}+\dfrac{7}{2}\right):\left(-\dfrac{25}{6}+\dfrac{22}{7}\right)+\dfrac{15}{2}\)

\(=\dfrac{35}{6}:\dfrac{-175+132}{42}+\dfrac{15}{2}\)

\(=\dfrac{35}{6}\cdot\dfrac{42}{-43}+\dfrac{15}{2}\)

\(=\dfrac{35\cdot7}{-43}+\dfrac{15}{2}\)

\(=\dfrac{-70\cdot7+15\cdot43}{86}=\dfrac{155}{86}\)

c: \(=\dfrac{-7}{5}\left(4+\dfrac{5}{9}+5+\dfrac{4}{9}\right)=\dfrac{-7}{5}\cdot10=-14\)

d: \(=4+\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}\cdot\dfrac{64}{125}\cdot\dfrac{-8}{27}\right)\)

\(=\dfrac{89}{16}+25\cdot\dfrac{-32}{375}\)

\(=\dfrac{89}{16}-\dfrac{32}{15}=\dfrac{823}{240}\)

e: \(=\dfrac{2}{3}-4\cdot\left(\dfrac{2}{4}+\dfrac{3}{4}\right)=\dfrac{2}{3}-5=-\dfrac{13}{3}\)

26 tháng 7 2018

\(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{264}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=1\)

1 tháng 1 2018

Sửa đề

\(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}}+\dfrac{5}{8}\)

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}\right)}{\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}}+\dfrac{5}{8}\)

\(=\dfrac{1}{2}\cdot3+\dfrac{5}{8}=\dfrac{3}{2}+\dfrac{5}{8}=\dfrac{17}{8}\)

1 tháng 1 2018

A= \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13})}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{256})}{\dfrac{4}{4}-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13})}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{256})}{4.(\dfrac{1}{4})-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{4^3}-\dfrac{1}{16^2})}{4.(\dfrac{1}{4})-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(-\dfrac{1}{4^2}-\dfrac{1}{16^2})}{4-\dfrac{1}{4^3}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(-\dfrac{1}{16^2})}{4.-\dfrac{1}{4^2}}+\dfrac{5}{8}\)

21 tháng 7 2017

Ta có: \(VT=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(4VT=\dfrac{1}{2^2:2^2}+\dfrac{1}{4^2:2^2}+\dfrac{1}{6^2:2^2}+...+\dfrac{1}{100^2:2^2}\)

\(4VT=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)

Lại có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(\Rightarrow4VT-1< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)(*)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}\) (**)

Từ (*) và (**) \(\Rightarrow4VT< 2-\dfrac{1}{50}\)

\(\Rightarrow VT< \dfrac{1}{2}-\dfrac{1}{200}< VP\Rightarrow\) đpcm

b) Ta có: \(2VT=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)

\(2VT+VT=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)

\(3VT=1-\dfrac{1}{64}< 1\)

\(\Rightarrow VT< \dfrac{1}{3}\) (đpcm)

22 tháng 7 2017

Thanks bạn nhìu nha!!!vuiyeu

Bài 3: 

Vì x,y,z tỉ lệ với 2;3;4 nên x/2=y/3=z/4

Đặt x/2=y/3=z/4=k

=>x=2k; y=3k; z=4k

\(M=\dfrac{5x+2y+z}{x+4y-3z}=\dfrac{10k+6k+4k}{2k+12k-12k}=10\)

13 tháng 12 2017

trời ơi không ai giúp mình hu hukhocroi

22 tháng 3 2018

A=1

bấm máy tính cx thấy mệt luôn!!!oaoa

22 tháng 3 2018

thương nhiuhaha