Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. để hàm số đi qua M(-1,1) thì ta có
\(1=\left(2m-1\right)\times\left(-1\right)+m+1\Leftrightarrow m=1\)
b.Hàm số cắt trụ tung tại điểm \(A\left(0,m+1\right)\)
Hàm số cắt trục hoành tại điểm \(B\left(\frac{-m-1}{2m-1},0\right)\)
Để OAB là tam giác cân thì ta có \(OA=OB\ne0\Leftrightarrow\left|m+1\right|=\left|\frac{-m-1}{2m-1}\right|\ne0\)
\(\Leftrightarrow\left|2m-1\right|=1\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)
a, Để đồ thị đi qua điểm M(-1;1) thì ta thay x = -1, y = 1 vào hàm số ta có:
\(1=\left(2m-1\right).\left(-1\right)+m+1\)
=>\(m=1\)
b,\(y=\left(2m-1\right)x+m+1\)
Cho \(x=0=>y=m+1=>OA=|m+1|\)
Cho \(y=0=>x=\frac{-m-1}{2m-1}=>B\left(\frac{-m-1}{2m-1};0\right)\)
\(=>OB=|\frac{-m-1}{2m-1}|=\frac{|m+1|}{|2m-1|}\)
\(\Delta AOB\)cân \(< =>\hept{\begin{cases}OA=OB\\OA>0\end{cases}}< =>\hept{\begin{cases}|m+1|\\|m+1|>0\end{cases}}\)
\(\hept{\begin{cases}|2m-1|\\m\ne-1\end{cases}< =>\hept{\begin{cases}2m-1=1\\2m-1=-1\end{cases}}}< =>\hept{\begin{cases}m=1\\m=0\end{cases}}\)
Vậy với m = 0 hoặc m = 1 thì đồ thị hàm số thỏa mãn yêu cầu của bài toán
\(a,\Leftrightarrow y=0;x=2\Leftrightarrow2m-2+m-2=0\Leftrightarrow m=\dfrac{4}{3}\)
\(b,\) PT giao Ox: \(\Leftrightarrow\left(m-1\right)x=2-m\Leftrightarrow x=\dfrac{2-m}{m-1}\Leftrightarrow A\left(\dfrac{2-m}{m-1};0\right)\Leftrightarrow OA=\left|\dfrac{2-m}{m-1}\right|\)
PT giao Oy: \(y=m-2\Leftrightarrow B\left(0;m-2\right)\Leftrightarrow OB=\left|m-2\right|\)
\(S_{OAB}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{2}{3}\Leftrightarrow\left|\dfrac{2-m}{m-1}\cdot\left(m-2\right)\right|=\dfrac{4}{3}\\ \Leftrightarrow\left|\dfrac{-\left(m-2\right)^2}{m-1}\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}\dfrac{-\left(m-2\right)^2}{m-1}=\dfrac{4}{3}\left(1\right)\\\dfrac{-\left(m-2\right)^2}{1-m}=\dfrac{4}{3}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-3m^2+12m-12=4m-4\\ \Leftrightarrow3m^2-9m+9=0\\ \Leftrightarrow m\in\varnothing\\ \left(2\right)\Leftrightarrow-3m^2+12m-12=4-4m\\ \Leftrightarrow3m^2-16m+16=0\\ \Leftrightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\) thỏa đề
\(c,\) Gọi \(E\left(x_0;y_0\right)\) là điểm cần tìm
\(\Leftrightarrow\left(m-1\right)x_0+m-2=y_0\\ \Leftrightarrow mx_0+m-x_0-y_0-2=0\\ \Leftrightarrow m\left(x_o+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2-x_0=-1\end{matrix}\right.\Leftrightarrow E\left(-1;-1\right)\)
a, bạn tự vẽ nhé
b, Để hàm số nghịch biến khi m < 0
c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3
Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)
d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3
Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)
bổ sung hộ mình nhé
( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Để ĐTHS cắt cả 2 trục tọa độ \(\Rightarrow m\ne0\)
Khi đó ta có: giao điểm với trục hoành: \(mx+2=0\Rightarrow x=-\dfrac{2}{m}\)
Giao điểm với trục tung: \(y=m.0+2=2\)
a. \(A\left(-\dfrac{2}{m};0\right)\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2}{m}\right|\)
\(B\left(0;2\right)\Rightarrow OB=\left|y_B\right|=2\)
\(OA=OB\Rightarrow\left|\dfrac{2}{m}\right|=2\Rightarrow m=\pm1\)
b. \(C\left(-\dfrac{2}{m};0\right);D\left(0;2\right)\Rightarrow\left\{{}\begin{matrix}OC=\left|\dfrac{2}{m}\right|\\OD=2\end{matrix}\right.\)
\(tanC=\dfrac{OD}{OC}=\left|m\right|=2\Rightarrow m=\pm2\)
\(y=\left(2m-1\right)x+m+1\left(m\ne\dfrac{1}{2}\right)\)
\(x=0\Rightarrow y=m+1\Rightarrow A\left(0;m+1\right)\Rightarrow OA=\left|m+1\right|\)
\(y=0\Rightarrow x=\dfrac{-m-1}{2m-1}=\dfrac{m+1}{1-2m}\Rightarrow B\left(\dfrac{m+1}{1-2m};0\right)\Rightarrow OB=\left|\dfrac{m+1}{1-2m}\right|\)
\(\Delta OAB-cân-tạiO\Leftrightarrow OA=OB>0\Rightarrow\left\{{}\begin{matrix}\left|m+1\right|>0\\\left|\dfrac{m+1}{1-2m}\right|>0\end{matrix}\right.\)\(\Leftrightarrow-1< m< \dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}m+1=\dfrac{m+1}{1-2m}\\m+1=\dfrac{-\left(m+1\right)}{1-2m}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(ktm\right);m=0\left(tm\right)\\m=1\left(tm\right);m=-1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
PT giao Ox và Oy:
\(\left\{{}\begin{matrix}y=0\Rightarrow\left(2m-1\right)x=-\left(m+1\right)\Rightarrow x=\dfrac{m+1}{1-2m}\Rightarrow A\left(\dfrac{m+1}{1-2m};0\right)\Rightarrow OA=\left|\dfrac{m+1}{1-2m}\right|\\x=0\Rightarrow y=m+1\Rightarrow B\left(0;m+1\right)\Rightarrow OB=\left|m+1\right|\end{matrix}\right.\)
\(\Delta AOB\text{ cân}\\ \Leftrightarrow OA=OB\Leftrightarrow\left|\dfrac{m+1}{1-2m}\right|=\left|m+1\right|\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{m+1}{1-2m}=m+1\\\dfrac{m+1}{2m-1}=m+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(m+1\right)\left(1-2m\right)-\left(m+1\right)=0\\\left(m+1\right)\left(2m-1\right)-\left(m+1\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-2m\left(m+1\right)=0\\\left(m+1\right)\left(2m-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\\m=-1\end{matrix}\right.\)