K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

dsssws

a: f(x)=x^3-2x^2+2x-5

g(x)=-x^3+3x^2-2x+4

b: Sửa đề: h(x)=f(x)+g(x)

h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1

c: h(x)=0

=>x^2-1=0

=>x=1 hoặc x=-1

a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)

\(Q\left(x\right)=-5x^3+6x^2+2x+5\)

b: Q(x)-P(x)=6

\(\Leftrightarrow-5x^3+6x^2+2x+5+5x^3-3x^2-2x-5=6\)

=>3x2=6

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

17 tháng 5 2022

còn câu c nữa bn chỉ mink vs!!!

 

P(x)=15 - 4x+ 3x+ 2x - x- 10

và Q(x)=5 + 4x+ 6x- 5x - 9x+ 7x

a) P(x)= -5x^3 + 3x^2 + 2x + 5.

Q(x)= -5x^3 + 6x^2 + 2x + 5.

b)

P(x)= -5x^3 + 3x^2 + 2x + 5 tại x= 1/2.

P(x)= -5 . 1/2^3 + 3 . 1/2^2 + 2 . 1/2 +5 = 49/8.

Q(x)= -5x^3 + 6x^2 + 2x + 5 tại x= 1/2

Q(x)= -5 . 1/2^3 + 6 . 1/2^2 + 2 . 1/2 +5= 55/8.

c)

P(x) - Q(x)= (-5x^3 + 3x^2 + 2x + 5) - (-5x^3 + 6x^2 + 2x + 5)

Kết quả -3x^2.

Nhớ nhấn like đấy

 

6 tháng 5 2021

Bài 2 

P(x) + Q(x) =  x3 – 6x + 2 + 2x2 - 4x3 + x - 5 =  - 3x+ 2x2 – 5x - 3 

P(x) - Q(x) = x3 – 6x + 2 - 2x2 + 4x3 - x + 5 = 5x− 2x− 7x+7

17 tháng 6 2021

Bai 3

a)(x-8)(x3+8)=0

=>x-8=0 hoac x3+8=0

=>x   =8 hoac x3    =-8

=>x   =8 hoac x     =-2

Vậy x=8 hoặc x=-2

b)(4x-3)-(x+5)=3(10-x)

=>4x-3-x-5=30-3x

=>4x-x+3x=30+3+5

=>x(4-1+3)=38

=>6x         =38

=>x           =\(\dfrac{38}{6}\)

=>x           =\(\dfrac{19}{3}\)

Vậy x=\(\dfrac{19}{3}\)

 

a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)

\(=4x^3-4x^2+1\)

\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)

\(=-2x^3-3x-2\)

\(C=x^3-6x^2+2x-4\)

b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)

\(=3x^3-10x^2-x-4\)

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)

a: P(x)=6x^3-4x^2+4x-2

Q(x)=-5x^3-10x^2+6x+11

M(x)=x^3-14x^2+10x+9

b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)

=10x^4-11x^3-5x^2-15x+21

 

a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2

                   =\(2x^2-2x\)

b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)

                  =x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2

                 =\(2x^3+4x^2+8x-4\)

c) Ta có H(x)=0

\(\Rightarrow\)\(2x^2-2x\)=0

\(\Rightarrow\)2x(x-1)=0

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0;1