Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^8+14x^4+1=\left(x^8+14x^4+49\right)-48\)
\(=\left(x^4+7\right)^2-48\)
\(=\left(x^4+7+\sqrt{48}\right)\left(x^4+7-\sqrt{48}\right)\)
\(b,x^8+98x^4+1\)
\(=\left(x^8+98x^4+2401\right)-2400\)
\(=\left(x^4+49\right)^2-2400\)
\(=\left(x^4+49+20\sqrt{6}\right)\left(x^4+49-20\sqrt{6}\right)\)
Mình nghĩ vậy k bt đúng k :)
Bài 1:
\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)
\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)
\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)
\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)
\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)
\(\Rightarrow C=\sqrt{14}\)
\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)
\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)
Bài 2:
a) Bạn xem lại đề.
b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)
c)
\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)
\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
a) = a^10 - a + a^5 - a^2 + a^2 + a + 1
= a(a^9 - 1) + a^2(a^3 - 1) + (a^2 + a + 1)
= a.(a^3-1)(a^6 + a^3 + 1) + a^2(a-1)(a^2+a+1) + (a^2 + a + 1)
= a.(a-1)(a^2 + a + 1)(a^6 + a^3 + 1) + a^2(a-1)(a^2+a+1) + (a^2 + a + 1)
= (a^2 + a + 1)[(a.(a-1)(a^6 + a^3 + 1) + a^2 + 1]
b) x^5 - x^4 - 1 = x^5 - x^4 + x^3 - x^3 + x^2 - x - x^2 + x - 1
= x^3(x^2 - x + 1) - x(x^2 - x + 1) - (x^2 - x + 1)
= (x^2 - x + 1)(x^3 - x - 1)
a) \(a^{10}+a^5+1\)
\(=\left(a^{10}-a^9+a^7-a^6+a^5-a^3+a^2\right)\)
\(+\left(a^9-a^8+a^6-a^5+a^4-a^2+a\right)\)
\(+\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(=a^2\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(+a\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(+\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(=\left(a^2+a+1\right)\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)