Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge0\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}{\left[1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2\right]\left[1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}+\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2-2\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)}{\left[1+\frac{\left(2\sqrt{x}+1\right)^2}{3}\right]\left[1+\frac{\left(2\sqrt{x}-1\right)^2}{3}\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{4\sqrt{x}}{\sqrt{3}}\right)^2-\frac{2\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{3}}{\left(\frac{4x+4\sqrt{x}+4}{3}\right)\left(\frac{4x-4\sqrt{x}+4}{3}\right)}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\frac{16x}{3}-\frac{2\left(4x-1\right)}{3}}{\frac{16\left(x+1+\sqrt{x}\right)\left(x+1-\sqrt{x}\right)}{9}}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{\frac{6+16x-8x+2}{3}}{\frac{16\left(x+1\right)^2-16x}{9}}.\frac{2010}{x+1}\)
\(A=\frac{x+1}{x^2+x+1}.\frac{2010}{x+1}=\frac{2010}{x^2+x+1}\le2010\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=0\)
...
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a) ĐK: \(0< a< 1\)
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(\sqrt{1+a}-\sqrt{1-a}\right)\left(\sqrt{1+a}+\sqrt{1-a}\right)}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)
b) Xét: \(Q^3-Q=\left(a-1\right)^3-\left(a-1\right)=\left(a-1\right)^2\left(a-1-1\right)=\left(a-1\right)^2\left(a-2\right)\)
Do \(a< 1\)=> \(a-2< 0\) và \(a-1< 0\)
nên \(\left(a-1\right)^2\left(a-2\right)< 0\)
=> \(Q^3-Q< 0\)
<=> \(Q^3< Q\)
Hầu hết các dạng bài này bạn chỉ cần quy đồng là ra ngay nhé :)
Điều kiện xác định : \(0< x\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
Đặt x=a-2,ta có : \(P=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\left(\frac{3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{\sqrt{x}-2}{3}.\frac{3}{3-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)
\(a,\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)=\left(1+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1^2-\sqrt{a}^2=1-a\)
\(b,\left(2-\frac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)=\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2-\frac{-\sqrt{a}\left(\sqrt{b}-5\right)}{\sqrt{b}-5}\right)\)
\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
\(c,\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)=\left(3+\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\right)\left(3-\frac{\sqrt{a}\left(3\sqrt{a}+1\right)}{3\sqrt{a}+1}\right)\)
\(=\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=3^2-\sqrt{a}^2=3-a\)
\(d,\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}+a}{1+\sqrt{a}}\right)=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(\sqrt{a}+2\right)\left(2-\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
trong ngoặc cứ quy đồng (nhớ đặt đk a>0; a khác 1) rồi làm như bt
\(P=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1+\sqrt{a}}\right):\frac{\sqrt{a}}{\sqrt{a}-1}\)
\(P=\left(\frac{1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{1-\sqrt{a}}{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}\right).\frac{\sqrt{a}-1}{\sqrt{a}}\)
\(P=\left(\frac{1+\sqrt{a}-1+\sqrt{a}}{1-a}\right).\frac{\sqrt{a}-1}{\sqrt{a}}\)
\(P=\left(\frac{2\sqrt{a}}{1-a}\right).\frac{\sqrt{a}-1}{\sqrt{a}}\)
\(P=\frac{2\sqrt{a}.\left(\sqrt{a}-1\right)}{\sqrt{a}.\left(1-a\right)}\)
\(P=\frac{2\left(\sqrt{a}-1\right)}{1-a}\)
vay \(P=\frac{2\left(\sqrt{a}-1\right)}{1-a}\)