Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x-3\)
<=>\(x-1-x+2=x-3\)
\(\Leftrightarrow\)\(x=4\)
Vậy pt có tập nghiệm \(S=\)4
\(\sqrt{4x-8}-2\sqrt{\dfrac{x-2}{4}}=3\left(x\ge2\right)\\ \Leftrightarrow2\sqrt{x-2}-\sqrt{x-2}=3\\ \Leftrightarrow\sqrt{x-2}=3\Leftrightarrow x-2=9\\ \Leftrightarrow x=11\left(tm\right)\)
ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow2\sqrt{x-2}-\sqrt{x-2}=3\)
\(\Leftrightarrow\sqrt{x-2}=3\Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\)
ĐKXĐ : \(x\ge-2\)
\(\sqrt{x^2-4}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x+2}=0\\\sqrt{x-2}-1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=3\end{array}\right.\) (TMĐK)
Vậy tập nghiệm của pt có 2 phần tử
\(\sqrt{x^2-4}-\sqrt{x+2}=0\left(ĐK:x\ge-2\right)\)
\(\Leftrightarrow\sqrt{x^2-4}=\sqrt{x+2}\)
\(\Leftrightarrow x^2-4=x+2\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=3\end{array}\right.\)
\(a,ĐK:x\ge\dfrac{1}{5}\\ PT\Leftrightarrow5x-1=64\\ \Leftrightarrow x=13\left(tm\right)\\ b,ĐK:x\ge\dfrac{2}{5}\\ BPT\Leftrightarrow5x-2< 16\\ \Leftrightarrow x< \dfrac{18}{5}\\ \Leftrightarrow\dfrac{2}{5}\le x< \dfrac{18}{5}\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\left|x-1\right|-\left|x-2\right|=x-3\\ \Leftrightarrow\left[{}\begin{matrix}1-x-\left(2-x\right)=x-3\left(x< 1\right)\\x-1-\left(2-x\right)=x-3\left(1\le x< 2\right)\\x-1-\left(x-2\right)=x-3\left(x\ge2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
Vì là trắc nghiệm nên mình làm tắt thôi nkaaa.
Thay `x=1/4` vào từng ý:
a: `0=0 =>` Đúng.
b. `23/4 = 5` => Sai.
\(ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x+4}=2-\sqrt{x-1}\\ \Leftrightarrow x+4=x+3-4\sqrt{x-1}\\ \Leftrightarrow4\sqrt{x-1}=-1\Leftrightarrow x\in\varnothing\)
Vậy \(S\in\varnothing\)