K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

Chọn B.

Đặt t = 5x-2 > 0, phương trình trở thành 3t2 + (3x - 10) t + 3 – x = 0 (*)

Ta coi đây là phương trình bậc hai ẩn t  và có

∆ = (3x - 10) 2 – 4.3( 3 - x) = (3x - 8)2

Suy ra phương trình(*)  có hai nghiệm: t = 1/3 hoặc t = 3 - x.

Với 

Với t = 3 - x thì 5x-2 = 3 - x. Dễ thấy x = 2  là nghiệm duy nhất (Vế trái là hàm đồng biến, vế phải là hàm nghịch biến).

Vậy phương trình đã cho có hai nghiệm.

23 tháng 2 2018

Chọn D.

<=> x = 4

Vậy phương trình đã cho có nghiệm duy nhất là x= 4

30 tháng 6 2018

Chọn C.

Điều kiện: 

Phương trình  đã cho tương đương với:

lg( x - 3) (x - 2) = lg10 - lg 5 = lg2

Vậy phương trình đã cho có nghiệm duy nhất là x = 4.

19 tháng 7 2017

Chọn C.

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên

21 tháng 7 2019

Chọn A.

NV
1 tháng 6 2021

\(\left(3^x-27\right)\left(x^2-x-20\right)\ge0\Leftrightarrow\left[{}\begin{matrix}-4\le x\le3\\x\ge5\end{matrix}\right.\)

\(\Rightarrow\) Có \(8+40-5+1=44\) nghiệm nguyên

30 tháng 1 2017

Đáp án C

14 tháng 6 2018

23 tháng 3 2019

Đáp án : D