Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
\(a,ĐK:x,y\ne2\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\y-2=b\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{3}{a}+\dfrac{2}{b}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{a}+\dfrac{9}{b}=15\\\dfrac{6}{a}+\dfrac{4}{b}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{5}{b}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+3=5\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow x=y=3\left(tm\right)\)
\(b,ĐK:x\ge3;y\ge1\)
Sửa: \(\sqrt{x-3}-\sqrt{y-1}=4\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-3}\ge0\\b=\sqrt{y-1}\ge0\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}a-2b=2\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3=36\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=39\\y=5\end{matrix}\right.\)
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........
a,\(x^2-4-\sqrt{x^2-2}=0\)
dat x^2-2=a ta co:
\(a-\sqrt{a}-2=0\)
=>\(\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{5}{2}=0\)
=>\(|\sqrt{a}-\frac{1}{2}|=\sqrt{\frac{5}{2}}\)
tu day xet cac truong hop roi giai
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
a) ĐK: \(x^2+7x+7\ge0\)
Đặt \(a=\sqrt{x^2+7x+7}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow3a^2-3+2a=2\) \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2+7x+7=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
b) ĐK: \(x^2-6x+6\ge0\)
Đặt \(a=\sqrt{x^2-6x+6}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow a^2+3=4a\) \(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=3\) \(\Rightarrow x^2-6x+6=9\) \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=1\) \(\Rightarrow x^2-6x+6=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
c)C1: Áp dụng bđt AM-GM \(\Rightarrow VT\ge2>\dfrac{7}{4}\)
=> Dấu = ko xảy ra hay pt vô nghiệm
C2: Đk:\(x>0\)
Đặt \(a=\sqrt{\dfrac{x^2+x+1}{x}}\left(a>0\right)\) \(\Rightarrow\dfrac{1}{a}=\sqrt{\dfrac{x}{x^2+x+1}}\)
Pttt: \(a+\dfrac{1}{a}=\dfrac{7}{4}\Leftrightarrow4a^2-7a+4=0\)
\(\Delta =-15<0 \) => Pt vô nghiệm
Vậy...
d) Đk: \(x\le-8;x\ge0\)
Đặt \(t=\sqrt{x\left(8+x\right)}\left(t\ge0\right)\)
Pttt: \(t^2-3=2t\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x\left(8+x\right)}=3\Leftrightarrow x^2+8x-9=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\) (tm)
Vậy...