Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng d: 3x + y + 6 = 0
Lấy M(-2;0) thuộc d. Phép vị tự tâm O (0;0) tỉ số k = 2 biến d thành d’//d với d’ có dạng là 3x + y + c = 0 (c 6) và biến M thành M’ thì O M ' → = 2 O M →
⇔ x = 2. − 2 = − 4 y = 2.0 = 0 ⇒ M'(-4; 0)
Vì M thuộc d nên M’ thuộc d’, thay tọa độ M’ vào d’ ta được:
3.(-4) + 0 + c = 0 c = 12 (tm)
Phương trình đường thẳng d’: 3x + y + 12 = 0
Chọn đáp án D
Phép vị tự tâm O(0; 0) tỉ số k = -5, biến M(x; y) thuộc d thành M’(x’, y’) thuộc d’ ⇒ O M ' → = - 5 O M →
Thay vào phương trình d ta được:
2 . − 1 5 x ' + 3. − 1 5 y ' − 4 = 0 ⇔ − 2 5 x ' + − 3 5 y ' − 4 = 0 ⇔ 2 x ' + 3 y ' + 20 = 0
⇒ phương trình của d’ là 2x + 3y + 20 = 0
Đáp án D
Phương trình đường thẳng d: x - y - 1= 0
Lấy M(x; y) thuộc d
Phép vị tự tâm O(0; 0) tỉ số k = 3 biến điểm M thành M’(x’; y’) thì O M ' → = 3 O M → ⇔ x ' = 3 x y ' = 3 y ⇔ x = 1 3 x ' y = 1 3 y '
Phép đối xứng trục Ox biến M’(x’; y’) thành M’’(x’’; y’’)
Thay vào phương trình d ta được: ⇔ x ' ' = x ' y ' ' = − y ' ⇔ x = 1 3 x ' ' y = − 1 3 y ' '
Hay x’’ + y’’ - 3 = 0
Vậy phương trình đường thẳng d’: x + y - 3 = 0.
Đáp án B
Phép vị tự tâm O tỉ số k = 2 biến điểm M(x,y) thuộc đường thẳng d thành điểm M’(x’; y’) thuộc đường thẳng d’.
Ta có: O M ' → = 2 O M → ⇒ x ' = 2 x y ' = 2 y
⇔ x = x ' 2 y = y ' 2
Vì điểm M thuộc đường thẳng d nên: 2x + y – 3 =0
Suy ra: 2. x ' 2 + y ' 2 − 3 = 0 ⇔ 2 x ' + y ' − 6 = 0
Do đó, phương trình đường thẳng d’ là : 2x + y – 6 =0
Đáp án B
(d'): x+y+c=0
Lấy A(1;0) thuộc (d')
=>A'(-2;0)
Thay x=-2 và y=0 vào (d'), ta được;
c-2+0=0
=>c=2