K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

a) (x3-x2)+(8x-8)=x(x-1)+8(x-1)=(x2+8)(x-1)

b) 8x3-8x2y+2xy2=2x(4x2-4xy+y2)

c) (x2+y2-z2)2 - 4x2y2=(x2+y2-z2)2 - (2xy)2=(x2+y2-z2-2xy)(x2+y2-z2+2xy)

24 tháng 5 2021

a) x2 + xy + y - 1 = (x2 - 1) + (xy + y) = (x - 1)(x + 1) + y(x + 1) = (x + 1)(x + y - 1)

b) 4 - x2 + 2xy - y2 = 4 - (x2 - 2xy + y2) = 4 - (x - y)2 = (x - y + 2)(4 - x + y) 

c) 8x2 - 18y2 = 2(4x2 - 9y2) = 2[(2x)2 - (3y)2] = 2(2x - 3y)(2x + 3y)

d) 8x3 - 4x2 - 6xy - 9y2 - 27y3

= (8x3 - 27y3) - (4x2 + 6xy + 9y2)

= (2x - 3y)(4x2 + 6xy + 9y2) - (4x2 + 6xy + 9y2)

= (2x - 3y - 1)(4x2 + 6xy + 9y2)

e) 4x2 - x - 3 = 4x2 - 4x + 3x - 3 = 4x(x - 1) + 3(x - 1) = (x - 1)(4x + 3)

f) 4x2 - 8x + 3 = 4x2 - 2x - 6x + 3 = 2x(2x - 1) - 3(2x - 1) = (2x - 3)(2x - 1)

24 tháng 5 2021

cảm ơn bạn

17 tháng 2 2021

1/ \(x^4+x^2-2=0\)

\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

2/ \(x^3+3x^2+6x+4=0\)

\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)

\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))

\(\Leftrightarrow x=-1\).

3/ \(x^3-6x^2+8x=0\)

\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)

4/ \(x^4-8x^3-9x^2=0\)

\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)

a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)

b: =(1-2x)(1+2x)

c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)

d: =(x+3)^3

e: \(=\left(2x-y\right)^3\)

f: =(x+2y)(x^2-2xy+4y^2)