Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+x\right)^2-2x^2-2x-15\)
\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)
\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)
\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)
đặt \(x^2+x=t\)
\(\left(1\right)\)\(=\) \(t^2-2t-15\)
\(=\left(t-1\right)^2-16\)
\(=\left(t-1-4\right)\left(t-1+4\right)\)
\(=\left(t-5\right)\left(t+3\right)\)
thay \(t=x^2+x\) ta có
\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
các câu còn lại tương tự nha
học tốt
1/(x+2)2 -(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x
2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)
d. 2x2(x - y) + 2y(y - x)
= 2x2(x - y) - 2y(x - y)
= (2x2 - 2y)(x - y)
= 2(x2 - y)(x - y)
e. 5a2b(a - 2b) - 2a(2b - a)
= 5a2b(a - 2b) + 2a(a - 2b)
= (5a2b + 2a)(a - 2b)
= a(5ab + 2)(a - 2b)
f. 4x2y(x - y) + 9xy2(x - y)
= (4x2y + 9xy2)(x - y)
= xy(4x + 9y)(x - y)
g. 50x2(x - y)2 - 8y2(y - x)2
= 50x2(x2 - 2xy + y2) - 8y2(y2 - 2xy + x2)
= 50x2(x2 - 2xy + y2) - 8y2(x2 - 2xy + y2)
= 50x2(x - y)2 - 8y2(x - y)2
= (50x2 - 8y2)(x - y)2
= 2(25x2 - 4y2)(x - y)2.
\(a,\Rightarrow x^2\left(5x-2\right)-\left(5x-2\right)=0\\ \Rightarrow\left(x-1\right)\left(x+1\right)\left(5x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Rightarrow2x\left(3x-5\right)+6x-10=0\\ \Rightarrow2x\left(3x-5\right)+2\left(3x-5\right)=0\\ \Rightarrow\left(2x+2\right)\left(3x-5\right)=0\\ \Rightarrow2\left(x+1\right)\left(3x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
Mình nghĩ là đề thiếu đó bạn :)
đề đáng lẽ phải là: \(x^7+x^2+1\)
\(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left[x\left(x-1\right)\left(x+3\right)+1\right]\left(x^2+x+1\right)\)
\(=\left[\left(x^2-x\right)\left(x^3+1\right)+1\right]\left(x^2+x+1\right)\)
\(=\left(x^5-x^4-x^2-x+1\right)\left(x^2+x+1\right)\)
\(1,\\ a,=x^2+6x+9-x^2-6x=9\\ b,=3x-1+6x-9x^2+x-10=-9x^2+10x-11\\ 2,\\ a,=4xy\left(x^2-2xy+y^2\right)=4xy\left(x-y\right)^2\)
\(a,=3abc\left(5b+7c\right)\\ b,=\left(x+1\right)\left(9x^2-3x\right)=3x\left(3x-1\right)\left(x+1\right)\\ c,=2x\left(x+3\right)\)
a) \(=3abc\left(5b+7c\right)\)
b) \(=3x\left(x+1\right)\left(3x-1\right)\)
c) \(=2x\left(x+3\right)\)