K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

Ta có \(x^4+10x^3+32x^2+40x+16=\left(x^4+2x^3\right)+\left(8x^3+16x^2\right)+\left(16x^2+32x\right)+\left(8x+16\right)\)

\(=x^3\left(x+2\right)+8x^2\left(x+2\right)+16x\left(x+2\right)+8\left(x+2\right)\)

\(=\left(x+2\right)\left(x^3+8x^2+16x+8\right)=\left(x+2\right)\left(x+2\right)\left(x^2+6x+4\right)\)

\(=\left(x+2\right)^2\left(x^2+6x+4\right)\)

16 tháng 11 2021

(x+5)2

16 tháng 11 2021

\(x^2+10x+25=\left(x+5\right)^2\)

\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)

NV
5 tháng 11 2021

Đa thức này ko phân tích thành nhân tử được

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)

2 tháng 9 2019

       \(x^4+2002x^2-2001x+2002\)

\(=x^4+2002x^2+x-2002x+2002\)

\(=\left(x^4+x\right)+\left(2002x^2-2002x+2002\right)\)

\(=x\left(x^3+1\right)+2002\left(x^2-x+1\right)\)

\(=x\left(x+1\right)\left(x^2-x+1\right)+2002\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left[x\left(x+1\right)+2002\right]\)

\(=\left(x^2-x+1\right)\left(x^2+x+2002\right)\)

26 tháng 7 2018

\(x^4-5x^2y^2+4y^4\)

\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)

\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)

\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)

1 tháng 8 2019

\(x^4\ge0;x^2\ge0;4>0\Rightarrow x^4+x^2+4>0\)

1 tháng 8 2019

đề lỗi rồi