Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= ( x2 + 4xy +4y2 ) - ( 4z2 +4z +1 )
= ( x + y )2 - [ (2z)2 - 2z.1 +12)]
= ( x + y )2 - (2z+1)2
= ( x + y - 2z - 1 ).( x + y + 2z + 1 )
=\(x^2+2.x.2y+\left(2y\right)^2-\left[\left(2z\right)^2+2.2z.1+1^2\right]=\left(x+2y\right)^2-\left(2z+1\right)^2=\left(x+2y+2z+1\right)\left(x+2y-2z-1\right)\)
\(x^2+4y^2+9-4xy-6x+12y\)
\(=\left(x^2-4xy+4y^2\right)+\left(-6x+12y\right)+9\)
\(=\left(x-2y\right)^2-6\left(x-2y\right)+9\)
\(=\left(x-2y-3\right)^2\)
\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)
\(x^4-5x^2y^2+4y^4\)
\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
4x2+4y-4xy-3y2-1
=(4x2-4xy+y2)-(4y2-4y+1)
=(2x-y)2-(2y-1)2
=(2x-y+2y-1)(2x-y-2y+1)
=(2x+y-1)(2x-3y+1)
x^2- 4y^2 + 4xy
= x^2 + 4xy - 4y^2
=x^2 + 2x2y - (2y)^2
= ( x - 2y )^2
\(x^2+4xy+4y^2-4z^2-1-4z\)
\(=x^2+4xy+4y^2-\left(4z^2+4z+1\right)\)
\(=\left(x+2y\right)^2-\left(2z+1\right)^2\)
\(=\left(x+2y+2z+1\right)\left(x+2y-2z-1\right)\)