K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
24 tháng 9 2021

\(x^2+4xy+4y^2-4z^2-1-4z\)

\(=x^2+4xy+4y^2-\left(4z^2+4z+1\right)\)

\(=\left(x+2y\right)^2-\left(2z+1\right)^2\)

\(=\left(x+2y+2z+1\right)\left(x+2y-2z-1\right)\)

1 tháng 8 2016

= ( x2 + 4xy +4y) - ( 4z+4z +1 ) 
= ( x + y )2 - [ (2z)- 2z.1 +12)]
= ( x + y ) - (2z+1)2
= ( x + y - 2z - 1 ).( x + y + 2z + 1 )
 

=\(x^2+2.x.2y+\left(2y\right)^2-\left[\left(2z\right)^2+2.2z.1+1^2\right]=\left(x+2y\right)^2-\left(2z+1\right)^2=\left(x+2y+2z+1\right)\left(x+2y-2z-1\right)\)

1 tháng 8 2017

\(x^2+4y^2+9-4xy-6x+12y\)

\(=\left(x^2-4xy+4y^2\right)+\left(-6x+12y\right)+9\)

\(=\left(x-2y\right)^2-6\left(x-2y\right)+9\)

\(=\left(x-2y-3\right)^2\)

\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)

26 tháng 7 2018

\(x^4-5x^2y^2+4y^4\)

\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)

\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)

\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

1 tháng 12 2017

4x2+4y-4xy-3y2-1

=(4x2-4xy+y2)-(4y2-4y+1)

=(2x-y)2-(2y-1)2

=(2x-y+2y-1)(2x-y-2y+1)

=(2x+y-1)(2x-3y+1)

23 tháng 12 2021

\(\left(x+2y-4\right)\left(x+2y+4\right)\)

23 tháng 8 2021

(x+y)^2 - 5y^2

25 tháng 9 2021

x^2- 4y^2 + 4xy

= x^2 + 4xy - 4y^2

=x^2 + 2x2y - (2y)^2

= ( x - 2y )^2